Is there a chance for future high luminosity e⁻-N (e⁺-N) physics in Europe?

Wolf-Dieter Nowak - DESY Zeuthen
— Int. Workshop on Hadron Structure and Hadron Spectroscopy —
Trieste, Italy, 20.02.2002

Experiments

Short-term: HERMES Run II
(2002+)
COMPASS Stage 1

Medium-term: Upgrade HERMES Spectrometer?
(2007+)
→ New Set of Measurements @ HERA-e?
COMPASS Stage 2?

Long-term: New high-rate, high-resolution spectrometer
(2012+)
to realize ELFE/TESLA-N physics?
→ Unify forces towards future 'eN in Europe'!

Physics

Quark helicity distributions $\Delta q \rightarrow \Delta \Sigma$
Quark transversity distributions $\delta q \rightarrow \delta \Sigma$
Polarized Gluon Distribution ΔG
Generalized Quark Distributions $\rightarrow J_q$
→ Long-term goal $\rightarrow L_q$
THE EFFECTIVE POLARIZED LUMINOSITY FOR A SOLID-STATE FIXED-TARGET EXPERIMENT IS A FACTOR OF ABOUT 25 LOWER THAN FOR POLARIZED ep-COLLIDERS.
2 Proposals

TESLA-N
- Use one (positron) arm of TESLA for polarized fixed target experiment
- Beam energy varied between 30 - 250 GeV
- Use large kinematic domain for Q^2 evolution studies
- Transversity distribution
- Gluon polarization

ELFE
- Inject electron beam @ 30 GeV in modified HERA-e
- Use HERA as stretcher ring ⇒ extract high dutyfactor beam
- Fully exploit high resolution for exclusive reactions
- Skewed Parton Distributions
- High precision exclusive reactions

HERMES \rightarrow COMPASS kinematics
HERMES kinematics
Basic Idea: Use one arm of the TESLA collider for a polarized fixed-target experiment to operate in parallel to the collider experiment(s).

☐ Electron (South) arm cannot be used, because kicker magnets would not be fast enough to divert only part of the beam.
⇒ Use positron (North) arm for acceleration
⇒ Static magnet system for separation from the positrons.

☐ The polarized beam constitutes only about 0.04% of the main current
⇒ Additional energy consumption is negligible.

Additionally needed for the experiment, besides target and spectrometer:

☐ Polarized source and injector
☐ Experimental hall and short tunnel
☐ Beam dump
Detector Design Considerations

- Beam energy 250 GeV
 ⇒ Overall dimensions similar to COMPASS

- Good momentum resolution
 ⇒ 3-stage spectrometer
 Stage 1 'Hadron Stage'
 Stage 2 'Electron Stage'
 Stage 3 'Forward Spectrometer'

- Horizontal dipole fields, to direct 'sheet of flame' to the hall floor
 ⇒ Two symmetric halves of the spectrometer: left and right

- Semi-inclusive measurements:
 ⇒ PID as in HERMES:
 Rich, TRD, ECAL
 for Stage 1 and Stage 2,
 Stage 3 only with ECAL
Polarized Electron Beam

The diagram illustrates the timing and frequency of electron pulses. There are 5 FEL pulses per second, and 5 TESLA pulses per second, with one every 200 ms. The 2830 bunches for e+e- are spaced every 337 ns, with 440 buckets available every 0.77 ns.

Table: Machine Frequency

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACHINE FREQUENCY</td>
<td>1.3 GHz ⇒</td>
</tr>
<tr>
<td></td>
<td>ONE BUCKET EVERY</td>
</tr>
<tr>
<td></td>
<td>0.77 ns</td>
</tr>
<tr>
<td>eN-BUNCHES/ S</td>
<td>6.2 \cdot 10^6</td>
</tr>
<tr>
<td>MAX. CURRENT</td>
<td>20 nA</td>
</tr>
<tr>
<td># e⁻/ eN-BUNCH</td>
<td>20000</td>
</tr>
</tbody>
</table>

Source and Energy

- Source: strained GaAs (SLAC TYPE)
- Energy: 250 GeV
- Also 25-100 GeV possible
- Polarization: ≥ 90 %
4He evaporator cryostat guarantees temperature of 1 K for a heat load of 1 W

⇒ SUFFICIENT POLARIZATION ONLY IN A HIGH MAGNETIC FIELD OF 5 T

⇒ TARGET POLARIZATION MUST SURVIVE HIGH RADIATION DOSES

⇒ DEUTERON TARGET MATERIAL: ^6LiD,
(\(^6\text{Li} \leftrightarrow \alpha + \text{D}\))
TARGET DILUTION FACTOR 0.44,
TARGET POLARIZATION 0.3

⇒ PROTON TARGET MATERIAL: NH_3,
TARGET DILUTION FACTOR 0.176,
TARGET POLARIZATION 0.8

⇒ AREAL TARGET DENSITY $\sim 1 \text{ g/cm}^2$
TESLA-N figures for 5 Hz operation:

<table>
<thead>
<tr>
<th>LUMINOSITY L $\int L , dt, /s$</th>
<th>$7.5 \cdot 10^{34}$ nucl/cm2/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\int L , dt, /e$-bunch</td>
<td>7.5 nb$^{-1}$</td>
</tr>
<tr>
<td>$\int L , dt, /$eff. day</td>
<td>12 mb$^{-1}$</td>
</tr>
<tr>
<td>$\int L , dt, /$eff. year</td>
<td>1.6 fb$^{-1}$</td>
</tr>
<tr>
<td>C.M. ENERGY</td>
<td>22.3 GeV</td>
</tr>
</tbody>
</table>

TESLA-N ANSATZ FOR EFFICIENCIES:

\[\varepsilon_{lumi} = \varepsilon_{up\,-\,time} \cdot \varepsilon_{exp} = 0.33 \cdot 0.75 = 0.25 \]

CONSERVATIVE ASSUMPTIONS:

- ONLY THE TIME RESOLUTION OF COMPASS CAN BE REACHED (2 ns)

- ONLY HALF OF THE MAXIMUM CURRENT IS USED TO KEEP THE MULTIPLE EVENT FRACTION SMALL

\[\Rightarrow 100 \text{ fb}^{-1} \text{ PER YEAR FOR PHYSICS} \]
Event Rates

250 GeV Electrons on a 1g/cm² Target

Möller, $E_e > 1.5$ GeV

$\nu > 3$ GeV

Quasi-real photoproduction

$\nu > 50$ GeV

DIS

($Q^2 > 1$, $W^2 > 4$)

$E_e > 10$ GeV

$E_e > 100$ GeV

No. of events / bunch for $\Theta > \Theta_{\text{min}}$

$\Theta_{\text{min}}, \text{ mrad}$

\[\frac{N_{\text{DIS}}(E_e > 10)}{N_{\text{photo}}(\nu > 3)} = 2.5 \times 10^{-3} \]

Möller events are kinematically distinguishable from DIS events for $Q^2 > 1$ GeV².
Possible Layout - ELFE

TESLA source

ELFE injection

Return loop

ELFE beam

ELFE extraction

• Return loop to HERA ring
• Modification of HERA-e ring
• Extraction from HERA

Requires:
- Large forward dipole
- Dual RICH detector
- State-of-the-art e.m. calorimeter
- Vacuum chamber to reduce multiple scattering
- Fast scintillating fiber trackers
- Recoil detector
Projected Performance

Exclusive reactions: \(e + p \to e + K^+ + \Lambda/\Sigma \)

Simulation of detector.
\(E_e = 25 \text{ GeV} \)

⇒ Resolution sufficient to distinguish different exclusive channels.
Motivation (I)

Parton Distributions of the Nucleon
at leading twist in pQCD

\[q(x, Q^2) \quad \text{Quark Number Density Distribution} \quad (f_1^q) \]
\[\Delta q(x, Q^2) \quad \text{Quark Helicity Distribution} \quad (g_1^q) \]
\[\delta q(x, Q^2) \quad \text{Quark Transversity Distribution} \quad (h_1^q) \]
\[G(x, Q^2) \quad \text{Glueon Number Density Distribution} \]
\[\Delta G(x, Q^2) \quad \text{Polarized Glueon Distribution} \]

\[\delta q(x, Q^2) \text{ and } \Delta G(x, Q^2) \text{ presently not known!} \]
Plans

• COMPASS 2001: initial phase
 - SMC polarised target
 - commissioning of RICH1
 - small angle tracking
 - partial large angle tracking
 - hadron calorimetry
 - muon trigger
 - start of data taking for ΔG

• COMPASS 2002
 - COMPASS polarised target
 - straw chambers
 - larger trigger acceptance
 - large angle tracking in stage 2
 - Si detectors
 - hadron and muon beam
 - data taking for ΔG
Expected precision

open charm production

\[\langle \frac{\Delta G}{G} \rangle = \frac{A_{\gamma N}^{c\bar{c}}}{\langle a_{LL} \rangle} \approx \frac{1}{p_\mu p_t f \langle D \rangle \langle a_{LL} \rangle} A_{exp}^{c\bar{c}} \]

- 1.5 y with 100 GeV and \(^6\text{LiD} \): \(\delta A_{\gamma N}^{c\bar{c}} = 0.05 \)

- gluon polarisation \(\delta \langle \frac{\Delta G}{G} \rangle = 0.14 \)

- possible improvements:
 - other decay channels
 \[D^0 \rightarrow K^- \pi^+ \pi^0 \quad 13.8\% \]
 \[D^0 \rightarrow K^+ \pi^- \pi^+ \pi^+ \quad 8.1\% \]
 \[D^+ \rightarrow K^+ \pi^- \pi^+ \quad 9.1\% \]
 - D\(^*\) tagging
 - improved analysing power with \(p_T(D^0) \) cut
 - J/\(\psi\) production

E. Kabaß

spin structure 7/01
Polarized Gluon Distribution (I)

Use pairs of high-p_T hadrons to isolate the photon gluon fusion process (PGF). The main background is due to QCD-Compton (QCDC).

Measure the cross section asymmetry

$$A_\parallel = \frac{N_{h+ h}^{\uparrow \downarrow} - N_{h+ h}^{\uparrow \uparrow} - L_{P}^{\uparrow \downarrow}}{N_{h+ h}^{\uparrow \downarrow} - L_{P}^{\uparrow \uparrow} + N_{h+ h}^{\uparrow \uparrow} - L_{P}^{\uparrow \downarrow}}$$

$$\approx \left(\hat{a}_{\text{PGF}} \frac{\Delta G}{G} f_{\text{PGF}} + \hat{a}_{\text{QCDC}} \frac{\Delta q}{q} f_{\text{QCDC}} \right) D$$

$$\hat{a}_{\text{PGF}} = -1 \quad \hat{a}_{\text{QCDC}} \approx 0.5 \quad \text{(Hard scattering asym.)}$$

Hermes Result

1996/97 Data

[PRL 84 (2000) 2584]

(Does not include systematic errors due to Pythia MC)
Expected precision

hadron pairs

$$A_{LL}^{HH} \approx \langle a_{LL}^{PGF} \rangle \frac{\Delta G}{G} \frac{\sigma^{PGF}}{\sigma_{tot}} + \langle a_{LL}^{COM} \rangle \frac{\Delta u}{u} \frac{\sigma^{COM}}{\sigma_{tot}}$$

1 y with 200 GeV and 6LiD target:

$$A_{LL}^{\gamma N} \quad \delta \langle \frac{\Delta G}{G} \rangle$$

- $H^- H^+$: $-0.2 \pm 0.025 \quad 0.05$
- $K^- K^+$: $-0.12 \pm 0.022 \quad 0.08$

![Graphs of h^+ h^- (p_T > 1.0 GeV/c) and K^+ K^- (p_T > 1.0 GeV/c)]

![Graphs of h^+ h^- (p_T > 1.5 GeV/c) and ΔG/G](spin structure 7/01)
Phenomenological predictions for $Q^2 = 10 \text{ GeV}^2$

HERMES points in the figure:

Data with longitudinal target polarization, originally planned until 2005, are to about 80% already on tape thanks to excellent HERA conditions in 2000 and due to an improvement of the target density by about a factor of 2.
QCD improved quark parton model:

\[g_1^p = \frac{1}{2} \left(\frac{1}{n_f} \sum_{i=1}^{n_f} e_i^2 \right) \left\{ \delta C_{NS} \otimes \Delta q^{NS} \right. \]

\[+ \delta C_S \otimes \Delta \Sigma + \delta C_G \otimes \Delta G \right\} \]

⇒ Parametric form of \(\Delta G(x) \)

Is indirectly determined from QCD NLO fits to \(g_1(x, Q^2) \)

⇒ The fit yields \(\Delta G(Q_0^2) \):

Gluon contribution to nucleon spin:

<table>
<thead>
<tr>
<th></th>
<th>(\Delta G(Q_0^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing data</td>
<td>(0.43 \pm 0.21)</td>
</tr>
<tr>
<td>Plus 100 fb(^{-1}) TESLA-N(p)</td>
<td>(\pm 0.06)</td>
</tr>
<tr>
<td>Plus 100 fb(^{-1}) TESLA-N(d)</td>
<td>(\pm 0.04)</td>
</tr>
</tbody>
</table>
INCLUSIVE MEASUREMENT:
MAP OUT $g_1^p(x, Q^2)$ WITH HIGH PRECISION

PROJECTED STATISTICAL ACCURACY FOR A MEASUREMENT
OF $g_1^p(x, Q^2)$ AT TESLA-N, BASED ON A LUMINOSITY
OF 100 fb$^{-1}$ AND A MINIMUM DETECTOR ACCEPTANCE
OF 5 mrad.

$0.0045 < x < 0.5$
Transversity at HERMES

Measure $\delta q(x)$ in SIDIS at HERMES via

(1) Twist-3 pion production in SIDIS (Jaffe, Ji, 93)

(2) Measurement of the transverse polarization of Λ's in the current fragmentation region (Baldracchini, 82 Jaffe, 96)

(3) Observation of the Collins effect in quark fragmentation (through the measurement of pion single target-spin asymmetries) (Collins, 93, Kotzinian, 95, Mulders et al, 96)

(4) Measurement of a correlation in 2-meson production (between transverse spin vector of target nucleon and normal to the two-meson plane) (Jaffe et al., 97)

(5) Measurement of spin-1 hadron production in SIDIS (Bacchetta, Mulders, 00)

Note: Methods (2)-(5) require a transversely polarized target only

Projections for $ep^+(d^+) \rightarrow e'\pi X$

$E = 27.5$ GeV, $P_T = 0.75$

Statistics expected for 2001+: $7 \cdot 10^6$ reconstr. DIS events

DIS cuts: $Q^2 > 1$ GeV2, $W > 2$ GeV, $0.02 < x < 0.7$, $y < 0.85$

From HERMES MC: pion distributions, acceptance

Cuts for pion kinematics:
$x_F > 0., z > 0.1, P_{h\perp} > 0.05$ GeV
TRANSVERSITY THROUGH THE
COLLINS EFFECT: METHOD

WEIGHTED ASYMMETRY
[MULDERS, TANGERMANN 96, KOTZINIAN, MULDERS 97]

\[A_T(x, y, z) \equiv \frac{\int d\phi^l \int d^2 P_{h\perp} \frac{|P_{h\perp}|}{z M_h} \sin(\phi_s^l + \phi_h^l) \left(d\sigma^\uparrow - d\sigma^\downarrow \right)}{\int d\phi^l \int d^2 P_{h\perp} \left(d\sigma^\uparrow + d\sigma^\downarrow \right)} \]

\(\phi_s^l \) IS AZIMUTHAL ANGLE OF TARGET SPIN VECTOR W.R.T. \(\gamma^* \) AXIS

FACTORIZATION w.r.t. \(x \) AND \(z \):

\[A_T(x, y, z) = f \cdot P_T \cdot D_{nn} \cdot \frac{\sum_q e_q^2 \delta q(x) H_{1}^{\perp(1)q}(z)}{\sum_q e_q^2 q(x) D_1^q(z)} \]

\(D_{nn} = (1 - y)/(1 - y + y^2/2) \): TRANSVERSE SPIN TRANSFER COEFFICIENT

NOTE: \(H_{1}^{\perp(1)q} \) ACCESSIBLE FROM \(e^+e^- \) DATA (LEP,BELLE)
Expected precision

- **Measured asymmetry**
 for 30 days real data taking using charged π

- **Selection**

 $\nu > 15 \text{ GeV}, \ E' > 5 \text{ GeV}, \ z > 0.1$

 $z_{\text{min}} = 0.1$

- $z_{\text{min}} = 0.3$

- **Improvement** with π^0 identification

 E. Kabub \text{Zeuthen 7/01}
OPTION 1: PROTON TARGET

Projections for $\delta u(x)$ and $H_1^{(1)u}(z)/D_1^{u}(z)$

OPTION 2: DEUTERON TARGET

Projections for $\delta u(x) + \delta d(x)$ and $H_1^{(1)u}(z)/D_1^{u}(z)$

⇒ HERMES chose option 1 for 2001+

NOTE: δd extraction possible by adding option 2
(→ combined analysis)

1[V. Korotkov, W.-D. N., K. Oganessyan, EPJC 18, 639 (2001)]
QUARK TRANSVERSITY FROM SEMI-INCLUSIVE PIONS (II)

DEFINE PURITIES:

\[P_q^h(x, Q^2, z) = \frac{e_q^2 q(x) D_1^q(z)}{\sum_q e_q^2 q(x) D_1^q(z)} \]

ASSUME FLAVOR-INDEPENDENT POLARIZED FRAGMENTATION FUNCTION \(H_1^{\perp (1)}(z) \):

\[
\frac{1}{P_T \cdot D_{nn}} \cdot A_p^{\pi^+} = \frac{\delta u(x, Q^2)}{u(x, Q^2)} \cdot \frac{H_1^{\perp (1)}(z)}{D_1(z)} \cdot P_{u(p)}^{\pi^+} + \frac{\delta \bar{d}(x, Q^2)}{\bar{d}(x, Q^2)} \cdot \frac{H_1^{\perp (1)}(z)}{D_1(z)} \cdot P_{\bar{d}(p)}^{\pi^+}
\]

RESOLVE NORMALIZATION AMBIGUITY:
\(\delta q = \Delta q \) at \(x \approx 0.25 \), low \(Q^2 \)

4 \cdot N_{(x,Q^2)} \cdot N_z \text{ MEASUREMENTS } (A_{p,d}^{\pi^+ (\pi^-)})

4 \cdot N_{(x,Q^2)} + N_z \text{ UNKNOWN PARAMETER}

\((\delta u, \delta d, \delta \bar{u}, \delta \bar{d}(x, Q^2), H_1^{\perp (1)}(z)/D_1(z)) \)

\(\Rightarrow \) OVERCONSTRAINED SYSTEM OF COUPLED EQUATIONS.

IF KAON ASYMMETRIES ARE MEASURED IN ADDITION, THE DISTRIBUTIONS \(\delta s(x, Q^2) \) AND \(\delta \bar{s}(x, Q^2) \) CAN BE INCLUDED AS WELL.
TESLA-N

QUARK TRANSVERSITY FROM SEMI-INCLUSIVE PIONS (IV)

PROJECTION FOR THE VALENCE u-QUARK TRANSVERSITY DISTRIBUTION BASED ON 100 fb^{-1} AND A MINIMUM DETECTOR ACCEPTANCE OF 5 mrad.

TENSOR CHARGE / TRANSVERSE SPIN OF THE NUCLEON: (‘ALL-VALENCE OBJECT’)

\[
\delta \Sigma(Q^2) = \sum_q \int_0^1 dx (\delta q(x, Q^2) - \delta \bar{q}(x, Q^2))
\]

⇒ chiral symmetry!

PROJECTED ACCURACIES AT \(Q^2 = 1\) GeV^2:

\[
\delta u = 0.88 \pm 0.01, \quad \delta d = -0.32 \pm 0.02
\]
Skewed Parton Distributions and DVCS

Skewed (or Generalized, or off-forward) Parton Distributions:

Unified theoretical description of inclusive and (hard) exclusive processes

Simplest hard exclusive process: $ep \rightarrow ep\gamma$

$(\gamma^*p \rightarrow \gamma p)$

Consider γ^*p in Bjorken limit \Rightarrow

Deeply Virtual Compton Scattering

- Highly virtual quark in γ^* scattering \rightarrow propagates perturbatively
- Simplest (and dominating) QCD mechanism to form Compton final state: quark radiates real γ and falls back to nucleon ground state

('hand-bag' subprocess in pQCD)

$
\begin{array}{c}
\text{DVCS} \\
\text{Bethe-Heitler} \Rightarrow \text{p.t.o.}
\end{array}$

\Rightarrow Interference gives access to DVCS amplitudes
DVCS AND BETHE-HEITLER

BETHE-HEITLER (BH):
(Elastic lepton-proton scattering with γ radiation by lepton in initial or final state)

INTERFERING PROCESS LEADING TO SAME FINAL STATE
Can be exactly calculated when Dirac and Pauli form factors known

CROSS SECTIONS AT E=27.5 GeV (HERMES): $1^\circ \leq \Theta_{\gamma p} \leq 5^\circ$
'In-plane' cross section: scattering plane = reaction plane (see below)

DVCS DOMINATED BY BH IN MOST OF KIN. REGION!

DVCS-BH INTERFERENCE:
⇒ USE BH AS A VEHICLE TO STUDY DVCS!
SPDs AND DVCS (II)

- **Skewed Parton Distributions:**
 Generalization of usual Parton Distributions and nucleon form factors

- **Usual parton distributions (PDs):** Probability to find a parton in the nucleon with momentum fraction x

- **SPDs:** Interference of 2 wave functions:
 Parton with $x + \xi$ emitted from nucleon,
 Parton with $x - \xi$ falls back
 (SPDs sensitive to momentum correlations)

Variables:

- **Parton long. momentum fractions** x and ξ

- $\gamma^* \rightarrow \gamma$ mom. transfer $\Delta^2 = (p_{\gamma^*} - p_{\gamma})$ (or t)

In DVCS: 4 different quark SPDs (per flavor)

$H^q(x, \xi, \Delta^2), \tilde{H}^q(x, \xi, \Delta^2)$ conserve nucleon helicity

$E^q(x, \xi, \Delta^2), \tilde{E}^q(x, \xi, \Delta^2)$ flip nucleon helicity

\[\downarrow \quad \downarrow \]

unpolarized polarized SPDs

In the limit $\Delta^\mu = 0$ (i.e. $\xi = 0$):

\[H^q(x, 0, 0) = q(x), \quad \tilde{H}^q(x, 0, 0) = \Delta q(x) \]

$q(x)$ and $\Delta q(x):$ quark distr. and quark helicity distr.
(no 'usual' PD equivalents for E^q and \tilde{E}^q)
SPDs and DVCS (III)

1st MOMENTS connected via sum rules to form factors.

2nd MOMENT of unpolarized SPDs in limit $\Delta^2 = 0$:

$$ J_q = \frac{1}{2} \int_{-1}^{+1} dx \, x \left[H^q(x, \xi, \Delta^2 = 0) + E^q(x, \xi, \Delta^2 = 0) \right] $$

REAL AND IMAGINARY PARTS OF DVCS AMPLITUDES $\mathcal{H}_1, \tilde{\mathcal{H}}_1, \mathcal{E}_1, \tilde{\mathcal{E}}_1$ CAN BE EXPRESSED THROUGH SPDs $H, \tilde{H}, E, \tilde{E}$. (P denotes Cauchy’s principal value):

\[
\begin{align*}
\text{Im } \mathcal{H}_1 &= -\pi \sum_q e_q^2 (H(\xi, \xi, \Delta^2) - H(-\xi, \xi, \Delta^2)) \\
\text{Im } \tilde{\mathcal{H}}_1 &= -\pi \sum_q e_q^2 (\tilde{H}(\xi, \xi, \Delta^2) + \tilde{H}(-\xi, \xi, \Delta^2)) \\
\text{Re } \mathcal{H}_1 &= \sum_q e_q^2 [P \int_{-1}^{+1} H(x, \xi, \Delta^2) \left(\frac{1}{x - \xi} + \frac{1}{x + \xi} \right) dx] \\
\text{Re } \tilde{\mathcal{H}}_1 &= \sum_q e_q^2 [P \int_{-1}^{+1} \tilde{H}(x, \xi, \Delta^2) \left(\frac{1}{x - \xi} - \frac{1}{x + \xi} \right) dx]
\end{align*}
\]

ANALOGOUS EXPRESSIONS FOR AMPLITUDES $\mathcal{E}_1, \tilde{\mathcal{E}}_1$.

EXTRACTION OF SPDs WILL BE A COMPLEX TASK
ϕ-DEPENDENCE OF ASYMMETRIES

DVCS kinematical configuration:

\[\phi_\gamma: \text{azimuthal angle between scattering and reaction plane.} \]

\[\phi_\gamma: \text{ASYMMETRIES SHOW DIFFERENT CHARACTERISTICS} \]

A) MEASURE LEPTON CHARGE ASYMMETRY:

unpolarized beam, unpolarized target \((A_{ch})\)

\[\Delta_{ch}d\sigma^{\text{unpol}} \equiv d\sigma(e^+p) - d\sigma(e^-p) \]

\[\sim \cos(\phi_\gamma) \times \text{Re} \left\{ F_1\mathcal{H}_1 + \frac{x_B}{2 - x_B}(F_1 + F_2)\tilde{\mathcal{H}}_1 - \frac{\Delta^2}{4M^2}F_2\mathcal{E}_1 \right\} \]

⇒ **ACCESS TO REAL PART OF \(\mathcal{H}_1, \tilde{\mathcal{H}}_1\)**

B) MEASURE LEPTON HELICITY ASYMMETRY:

long. polarized beam, unpolarized target \((A_{LU})\)

\[\Delta d\sigma \equiv d\sigma(e^+p) - d\sigma(e^-p) \]

\[\sim \sin(\phi_\gamma) \times \text{Im} \left\{ F_1\mathcal{H}_1 + \frac{x_B}{2 - x_B}(F_1 + F_2)\tilde{\mathcal{H}}_1 - \frac{\Delta^2}{4M^2}F_2\mathcal{E}_1 \right\} \]

⇒ **ACCESS TO IMAGINARY PART OF \(\mathcal{H}_1, \tilde{\mathcal{H}}_1\)**
A NEW Recoil Detector for Hard Exclusive Reactions

<table>
<thead>
<tr>
<th>DVCS</th>
<th>(\gamma^* p \rightarrow \gamma p)</th>
<th>(H \tilde{H} E \tilde{E})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exclusive pseudoscalar meson production</td>
<td>(\gamma^* p \rightarrow \pi^0 p)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\gamma^* p \rightarrow \pi^+ n)</td>
</tr>
<tr>
<td></td>
<td>exclusive vector meson production</td>
<td>(\gamma^* p \rightarrow \rho^0 p)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\gamma^* p \rightarrow \omega p)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\gamma^* p \rightarrow \phi p)</td>
</tr>
</tbody>
</table>

Schematic cross section
SPDs modeled according to

[M. Vanderhaeghen, P. Guichon, M. Guidal, PRD 60 (99) 094017]

Most simple ansatz is to neglect ξ dependence.

Then e.g.

$$H^{u/p}(x, \xi, \Delta^2) = u(x) F^{u/p}_1(\Delta^2)/2$$

$$H^{d/p}(x, \xi, \Delta^2) = d(x) F^{d/p}_1(\Delta^2)$$

$$H^{s/p}(x, \xi, \Delta^2) = 0$$

Similar expressions for $H^{q/p} \rightarrow \tilde{H}^{q/p}$.

$u(x)$ and $d(x)$:

Usual unpolarized quark distributions

Proton and neutron el. magn. form factors used to construct flavor-dependent Dirac and Pauli form factors

Annual integrated luminosity: 2fb^{-1}

(Unpolarized target)

Hermes acceptance taken in account for all involved particles

Kinematical cuts

$$E_e > 3.5 \text{ GeV} \quad E_\gamma > 1 \text{ GeV} \quad P_p > 0.2 \text{ GeV}$$

$$W^2 > 4 \text{GeV}^2 \quad Q^2 > 1 \text{GeV}^2 \quad 15 < \Theta_{\gamma\gamma^*} < 70 \text{mrad}$$
HERMES Measurements with a Recoil Detector, Projections\(^3\)(ii)

A) Measure lepton charge asymmetry in DVCS:
unpolarized beam, unpolarized target

B) Measure lepton helicity asymmetry in DVCS:
polarized beam, unpolarized target (no D-term)

Open circles in left panel: HERMES preliminary (1996/97 data)

\(^3\)[V. Korotkov, W.-D. N., hep-ph/0108316] \(\rightarrow\) EPJ C. 03/02
$e^+ p \rightarrow e^+ p \gamma$

$P_T = 0.9$

$L_{int} = 0.8 \text{ fb}^{-1}$
$e^+ p \rightarrow e^+ p \gamma$

$P_T = 0.9$

$L_{int} = 0.8 \text{ fb}^{-1}$
\[H^{\ast} \sim q(x) \cdot F^{\ast}(\Delta^2) \]

\[H^{\ast} \sim \Delta q_v(x) \cdot G_{\alpha}(\Delta^2) \]

Skewness-independent

\[\begin{array}{c}
\begin{array}{c}
 b=1 \\
 b=3
\end{array}
\end{array} \]

\[H^{\ast} \sim \frac{q(x)}{2} \cdot H_{DD}^{\ast}(x, \xi) \]

Skewness-dependent

double distribution

\[\begin{array}{c}
\begin{array}{c}
 b=1 \\
 b=3
\end{array}
\end{array} \]

\[H^{\ast} \sim \frac{q(x)}{2} \cdot \left\{ H_{DD}^{\ast}(x, \xi) + \Theta \left(\xi - \xi \right) \frac{1}{N_{\xi}} D \left(\frac{\xi}{\xi} \right) \right\} \]

"D-term" for correct polynomial-ability properties
(diff. sign for \(H \& E \)
\(\rightarrow \) cancels in Ji's 2nd moment)

\[H_{DD}^{\ast}(x, \xi) = \int dy \int dt \delta(x-y-t\xi) h(y,t) q(y) \]

ordinary qu. distr.

\[h(y,t) = \frac{\Gamma(26+2)}{2^{26+1} \Gamma^2(6+1)} \cdot \frac{[1-(y^2+t^2)]^6}{(1+y)^{26+1}} \]

Note: \(b \to \infty \) means skewness-independent
High luminosity
TESLA-N/ELFE - type exp.
w/ transv. pol. target

\[e^{-} p \uparrow \rightarrow e^{-} p \gamma \]
\[P_{T} = 0.80 \]
\[L_{\text{int}} = 100 \text{ fb}^{-1} \]
LONG-TERM OBJECTIVES

Once J_q will have been determined from (a variety of) GPD measurements with acceptable accuracy, two remaining major unknowns in the nucleon spin puzzle get into reach:

L_q: Quark Orbital Angular Momentum, through

\[J_q = \frac{1}{2} \Delta \Sigma + L_q \]

Since quark contribution to the nucleon spin, $\Delta \Sigma$, well measured already now.

J_g: Gluon Total Angular Momentum, through

\[\frac{1}{2} = J_q + J_g \]

NOTE: Although gluon contribution to the nucleon spin, ΔG, expected to be well measured in a few years [COMPASS, RHIC] this may not allow to separate L_g, since for the integrals:

\[J_g \neq \Delta G + L_g \]

⇒ More theor. work possibly very helpful
Why a large Q^2 range may be very useful for GPD meas.?
(thanks to P. Guichon pointing to this)
[A. Freund, hep-ph/9903488]

Deconvolution problem:

\[
\text{DIS} : \quad F_2(x, Q^2) = \int \frac{dy}{y} C_i \left(\frac{x}{y}, Q^2 \right) f_i(y, Q^2)
\]

only one variable
moments in x; inverse Mellin transform $\Rightarrow f_i(x, Q^2)$

\[
\text{DVCS} : \quad \text{GPD} (x, f, t, Q^2)
\]

internal variable $f(x_b)$: two variables \Rightarrow deconvolution not possible!

Theoretical work-around [A.F.]:

- believe that Q^2-dep. of amplitude is known for $Q^2 > Q_0^2$
- measure large enough Q^2-range to distinguish this log Q^2-behaviour from twist-4 ($\sim 1/Q^2$) behaviour
- analyze region where twist-4/twist-2 \ll twist-2
- measure enough (many!) data points in Q^2 for every x_b
- solve (large!) matrix equation $\Rightarrow \text{GPD} (x, f, t, Q^2)$

\Rightarrow worth to be studied in more detail (feasibility!)}
2010+

WHICH MACHINE FOR WHICH PHYSICS?

Trieste, Feb. 20 '02

Flagship' topics to study hadron structure at a high-luminosity fixed-target eN-facility

<table>
<thead>
<tr>
<th>Physics</th>
<th>Measured functions</th>
<th>processes</th>
<th>exp. requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXCLUSIVE REACTIONS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Total quark angular momentum J_q (*)</td>
<td>F_1's relation: $J_q = \lim_{t \to 0} \frac{1}{2\pi} \int dx { H_1^q(x, t) + E(x, t) }$</td>
<td>DVCS: H_1^E, H_1^T</td>
<td>U</td>
</tr>
<tr>
<td>1st step: J_q (2006 +)</td>
<td>$F_2^{1s} = H_1^E < 2006$</td>
<td>DVEM: pseudoscalar: H_1^E, vector: H_1^T</td>
<td>T</td>
</tr>
<tr>
<td>SEMI-INCLUSIVE DIS:</td>
<td>transversity distribution $\Delta g(x, Q^2) = \Delta g_T(x, Q^2) \equiv \Delta g^0(x, Q^2)$</td>
<td>DIS + SIDIS</td>
<td>L</td>
</tr>
<tr>
<td>• PRECISE Measurement of tensor charge (\rightarrow chiral symmetry breaking)</td>
<td>$\Delta \Sigma(x^2) = \int dx { \Delta g(x, Q^2) - \bar{\Delta g}(x, Q^2) }$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• axial charge</td>
<td>$\Delta \Sigma(x^2) = \int dx { \Delta g(x, Q^2) + \bar{\Delta g}(x, Q^2) }$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) fundamental issues!

Summary of requests:

- Polarized targets (T, L); solid-state
- Sufficient duty cycle ($1-10\%$)
- Variable beam energy ($30 \ldots 100 \ldots 200$ GeV)
OUTLOOK (as of 20.02.2002)

First contours of a road map towards a future high-luminosity fixed-target electron (positron)-nucleon experiment in Europe become clearly visible:

- **SHORT-TERM** (2002-2006):
 COMPASS and HERMES Run II,
 in conjunction with RHIC-Spin & Jlab,
 will give *accurate* (first) answers on
 $\Delta u, \Delta d, \Delta \bar{u}, \Delta \bar{d}, \Delta G, (\Delta s), \delta u, (\delta d), (H^u)$

- **MEDIUM-TERM** (2007+):
 'Window' for a measurement of H^u, \tilde{H}^u, E^u
 at HERA-e after upgrade of HERMES target & spectrometer → 'Flagship' physics:
 \Rightarrow Determination of the u-quark
 total angular momentum

- **LONG-TERM** (2012+):
 There exists a chance for one experiment, to
 be realized most economically in conjunction
 with a TESLA-like machine allowing for a
 duty cycle above 1% and a variable energy
 range above 30 GeV
 \Rightarrow the best combination of ELFE/TESLA-N
 physics under the (then) given conditions
 should be envisaged