Nuclear effects in hadron production at HERMES

Achim Hillenbrand
(DESY)

for the hermes collaboration

8th European Research Conference
on
Electromagnetic Interactions with Nucleons and Nuclei
(EINN 2009)
Milos, Greece
Overview

- Measuring nuclear effects in hadronization at HERMES
- Final results on hadron attenuation
- Final results on p_t broadening
Semi-inclusive deep-inelastic scattering

\[
Q^2 = -q^2 = -(k - k')^2
\]

\[
\nu_{\text{lab}} = E - E'
\]

\[
X = \frac{Q^2}{2M\nu}
\]

\[
Z_{\text{lab}} = \frac{E_{\text{had}}}{\nu}
\]

Cross section contains Distribution Functions and Fragmentation Functions:

\[
\sigma^{ep\rightarrow eh} \sim \sum_q \text{DF}^{p\rightarrow q} \otimes \sigma^{eq\rightarrow eq} \otimes \text{FF}^{q\rightarrow h}
\]

DF: distribution of quarks in the nucleon

FF: fragmentation of (struck) quark into hadronic final state
Space-time evolution of hadronization

- parton
- pre-hadron
 - colorless
 - quantum numbers of final hadron
- final state hadron

Formation length $l_c \sim 1-10$ fm $\Rightarrow \mathcal{O}$ (size of nucleon)
Space-time evolution of hadronization

- **parton** ⇒ energy loss by q-q scattering and gluon radiation
- **pre-hadron** ⇒ hadronic final state interactions (FSI)
 - colorless
 - quantum numbers of final hadron
- **final state hadron** ⇒ hadronic final state interactions (FSI)

Formation length $l_c \sim 1$-10 fm ⇒ \mathcal{O} (size of nucleon)
Nuclear effects in SIDIS

• use targets of different nucleon number A for different length scales to investigate space-time development of hadronization
 ▶ HERMES: D, He, Ne, Kr, Xe
• nuclear effects:
 ▶ hadron attenuation
 ▶ p_t broadening
Hadron attenuation & p_t broadening

Hadron attenuation

$$R^h_A(\nu, Q^2, z, p_t^2) = \left(\frac{N^h(\nu, Q^2, z, p_t^2)}{N^e(\nu, Q^2)} \right)_A \frac{N^h(\nu, Q^2, z, p_t^2)}{N^e(\nu, Q^2)}_D$$

Caused by partonic and hadronic effects:
- shift to lower energy
- absorption

\Rightarrow sensitive to l_c and l_h

p_t broadening

$$\Delta \langle p_t^2 \rangle^h_A = \langle p_t^2 \rangle^h_A - \langle p_t^2 \rangle^h_D$$

Dominated by partonic effects:
- inelastic scattering suppressed
- elastic cross section small

\Rightarrow sensitive to l_c
• Forward acceptance spectrometer: $40 \text{ mrad} \leq \Theta \leq 220 \text{ mrad}$
• Kinematic coverage: $0.02 \leq x_{Bj} \leq 0.8$ for $Q^2 > 1 \text{ GeV}^2$ and $W > 2 \text{ GeV}$
• Tracking: $\delta P/P = 0.7\% - 2.5\%, \delta \Theta \leq 1 \text{ mrad}$
• PID: TRD, Preshower, Calorimeter, RICH (Cherenkov before 1998)
• Forward acceptance spectrometer: $40 \text{ mrad} \leq \Theta \leq 220 \text{ mrad}$
• Kinematic coverage: $0.02 \leq x_{Bj} \leq 0.8$ for $Q^2 > 1 \text{ GeV}^2$ and $W > 2 \text{ GeV}$
• Tracking: $\delta P/P = 0.7\% - 2.5\%$, $\delta \Theta \leq 1 \text{ mrad}$
• PID: TRD, Preshower, Calorimeter, RICH (Cherenkov before 1998)
Hadron attenuation

\[R_A^h(\nu, Q^2, z, p_t^2) = \left(\frac{N^h(\nu, Q^2, z, p_t^2)}{N^e(\nu, Q^2)} \right)_A \left(\frac{N^h(\nu, Q^2, z, p_t)}{N^e(\nu, Q^2)} \right)_D \]

- attenuation: strong dependence on A
- large \(\nu \):
 - longer \(l_c \) (Lorentz boost)
 - less absorption
- \(z \) dependence:
 - partonic: \(\Delta z \) from energy loss & \(z \) dependence of FF
 - hadronic: decrease in hadron formation length & absorption

Hadron attenuation: p_t

$$R^h_A(\nu, Q^2, z, p_t^2) = \frac{\left(\frac{N^h(\nu,Q^2,z,p_t^2)}{N^e(\nu,Q^2)} \right)_A}{\left(\frac{N^h(\nu,Q^2,z,p_t)}{N^e(\nu,Q^2)} \right)_D}$$

- for heavier nuclei: rise at high p_t^2
- Cronin-effect in DIS (no ISI)
- rise is attributed to a broadening of the p_t distribution

• broadening increases with mass number A
 • similar for $\pi^+/-$
 • seems systematically higher for K^+
• precision does not allow firm conclusion about functional form of the increase with A
• no saturation observed
 • p_t broadening due to effects in the partonic stage
 • pre-hadron formation near/outside surface

$\langle Q^2 \rangle = 2.4 \text{ GeV}^2$
$\langle \nu \rangle = 14.5 \text{ GeV}$
$\langle z \rangle = 0.39$
\[\Delta \langle p_t^2 \rangle_A^h = \langle p_t^2 \rangle_A^h - \langle p_t^2 \rangle_D^h \]

... vs. V:

- in models commonly connected with the formation length
- flat behavior

supports the notion that color neutralization mainly happens at the surface/outside of the nucleus

arXiv:0906.2478
\[\Delta \langle p_t^2 \rangle_A = \langle p_t^2 \rangle_A - \langle p_t^2 \rangle_D \]

... vs. \(Q^2\) / vs. \(x_B\)

- similar behavior vs. \(Q^2\) and \(x_B\) (strong correlation in HERMES kinematics)
- slight increase with both variables
- direct interpretation difficult
- different model predictions

\(\Rightarrow \) result helps to distinguish models

arXiv:0906.2478
\[\Delta \langle p_t^2 \rangle^h_A = \langle p_t^2 \rangle^h_A - \langle p_t^2 \rangle^h_D \]

... vs. \(z \):

- \(p_t \) broadening vanishes as \(z \to 1 \)
- \(z=1 \): no energy loss
 - no room for \(p_t \) broadening
 - except possible primordial \(k_t \) modification vs. \(A \)
- results indicates no or little dependence of \(k_t \) on the size of the nucleus
- \(p_t \) broadening not due to elastic scattering of (pre-) hadrons

\(\text{arXiv:0906.2478} \)
Conclusions

- HERMES provides the largest data set to study space-time evolution of hadronization
- **final results on hadron attenuation** \((\text{Nucl. Phys. B 780 (2007) 1})\)
 - strong A dependence
 - less attenuation with larger \(v\) and low \(z\)
 - multiplicity ratio rises at high \(p_t^2\) (Cronin effect)
- **final results on \(p_t\) broadening** \((\text{arXiv:0906.2478})\)
 - \(p_t^2\) broadening is mostly caused by partonic effects
 - color neutralization happens outside (or close to the surface) of the nucleus
Hadron attenuation

Charged pions

\[
R_A^h(\nu, Q^2, z, p_t^2) = \frac{\left(\frac{N_h(\nu, Q^2, z, p_t^2)}{N_e(\nu, Q^2)} \right)_A}{\left(\frac{N_h(\nu, Q^2, z, p_t)}{N_e(\nu, Q^2)} \right)_D}
\]

- stronger attenuation for larger \(A \)
- low \(p_t^2 \) bin:
 strong \(\nu \) dependence
- less attenuation for large \(p_t \)
 (attr. to broadening of the \(p_t \) distribution, Cronin effect)
- high \(p_t^2 \) bin:
 effect vanishes for large \(z \)

\(\Rightarrow \) consistent with the idea that rise at large \(p_t^2 \) is of partonic origin

Figures:

- Various plots showing the ratio \(R_A^h \) for different elements (He, Ne, Kr, Xe) and different values of \(Q^2 \) and \(z \). The plots indicate the behavior of hadron attenuation as a function of these variables.

References: