Exclusive mesons at HERMES

ECT* workshop on hard photon and meson production
Trento, Italy
11-15 October, 2010

Ami Rostomyan
presented by Wolf-Dieter Nowak
(on behalf of the HERMES collaboration)
exclusive meson production

factorization in collinear approximation

\[\mathcal{A} \propto F(x, \xi, t; \mu^2) \otimes K(x, \xi, z; \log(Q^2/\mu^2) \otimes \Phi(z; \mu^2) \]

at leading-twist: \(H, E, \tilde{H}, \tilde{E} \)

- \(H \) and \(\tilde{H} \) conserve the nucleon helicity
- \(E \) and \(\tilde{E} \) describe the nucleon helicity flip

quantum numbers of final state selects different GPDs

- vector mesons \((\gamma^*_L \rightarrow \rho_L, \omega_L, \phi_L)\): \(H, E \)
- pseudoscalar mesons \((\gamma^*_L \rightarrow \pi, \eta)\): \(\tilde{H}, \tilde{E} \)

factorization for \(\sigma_L \) (and \(\rho_L, \omega_L, \phi_L \)) only

- \(\sigma_L - \sigma_T \) suppressed by \(1/Q \)
- \(\sigma_T \) suppressed by \(1/Q^2 \)
exclusive meson production

modified perturbative approach

\[A \propto F(x, \xi, t; \mu^2) \otimes K(x, \xi, z; \log(Q^2/\mu^2)) \otimes \Phi(z, k_\perp; \mu^2) \]

at leading-twist: \(H, E, \tilde{H}, \tilde{E} \)
- \(H \) and \(\tilde{H} \) conserve the nucleon helicity
- \(E \) and \(\tilde{E} \) describe the nucleon helicity flip
quantum numbers of final state selects different GPDs
- vector mesons \((\gamma^*_L \to \rho_L, \omega_L, \phi_L) \): \(H, E \)
- pseudoscalar mesons \((\gamma^*_L \to \pi, \eta) \): \(\tilde{H}, \tilde{E} \)

factorization for \(\sigma_L \) (and \(\rho_L, \omega_L, \phi_L \)) only
- \(\sigma_L - \sigma_T \) suppressed by \(1/Q \)
- \(\sigma_T \) suppressed by \(1/Q^2 \)

power corrections: \(k_\perp \) is not neglected
- regulate the singularity in the transverse amplitude
- \(\gamma^*_T \to \rho^0_T \) transitions can be calculated (model dependent)
exclusive meson production

modified perturbative approach

\[\mathcal{A} \propto F(x, \xi, t; \mu^2) \otimes K(x, \xi, z; \log(Q^2/\mu^2)) \otimes \Phi(z, k_\perp; \mu^2) \]

at leading-twist: \(H, E, \tilde{H}, \tilde{E} \)

- \(H \) and \(\tilde{H} \) conserve the nucleon helicity
- \(E \) and \(\tilde{E} \) describe the nucleon helicity flip

quantum numbers of final state selects different GPDs

- vector mesons \((\gamma^*_L \rightarrow \rho_L, \omega_L, \phi_L)\): \(H, E \)
- pseudoscalar mesons \((\gamma^*_L \rightarrow \pi, \eta)\): \(\tilde{H}, \tilde{E} \)

factorization for \(\sigma_L \) (and \(\rho_L, \omega_L, \phi_L \)) only

- \(\sigma_L - \sigma_T \) suppressed by \(1/Q \)
- \(\sigma_T \) suppressed by \(1/Q^2 \)

power corrections: \(k_\perp \) is not neglected

- \(\gamma^*_T \rightarrow \rho^0_T \) transitions can be calculated (model dependent)
- \(\rho^0 \): contributions from \(\tilde{H} \) and \(\tilde{E} \)
- \(\pi^+ \): contributions from \(H_T \)
vector meson polarization

\(\gamma^* \) and \(\rho^0, \phi, \omega \) have the same quantum numbers

- helicity transfer \(\gamma^* \rightarrow \rho^0, \phi, \omega \)
 - signature: \(\rho^0, \phi, \omega \) production angular distribution

- the spin-state of the \(\rho^0, \phi, \omega \) is reflected in the orbital angular momentum of decay particles
 - \(\rho^0, \phi, \omega \) (in the rest frame): \(J = L + S = 1 \)
 - \(\pi, K : S = 0, \ L = 1 \)
 - signature: decay angular distribution
vector meson cross section

\[\frac{d\sigma}{dx_B dQ^2 dt d\phi_s d\phi d\cos \vartheta d\varphi} \sim \frac{d\sigma}{dx_B dQ^2 dt} W(x_B, Q^2, t, \phi_s, \phi, \cos \vartheta, \varphi) \]
vector meson cross section

\[\frac{d\sigma}{dx_B dQ^2 dt d\phi_s d\phi d\cos\theta d\phi} \sim \frac{d\sigma}{dx_B dQ^2 dt} W(x_B, Q^2, t, \phi_s, \phi, \cos\theta, \varphi) \]

production and decay angular distributions W decomposed:

\[W = W_{UU} + P_l W_{LU} + S_L W_{UL} + P_l S_L W_{LL} + S_T W_{UT} + P_l S_T W_{LT} \]
vector meson cross section

\[
\frac{d\sigma}{dx_B dQ^2 dt d\phi_s d\phi d\cos \vartheta d\varphi} \sim \frac{d\sigma}{dx_B dQ^2 dt} W(x_B, Q^2, t, \phi_s, \phi, \cos \vartheta, \varphi)
\]

production and decay angular distributions \(W\) decomposed:

\[
W = W_{UU} + P_l W_{LU} + S_L W_{UL} + P_l S_L W_{LL} + S_T W_{UT} + P_l S_T W_{LT}
\]

parametrized by helicity amplitudes \(T_{\lambda \lambda'}\) or \(T^{\nu \sigma}_{\mu \lambda}\):

\begin{align*}
T_{\lambda \lambda'} & : & \text{Schilling, Wolf (1973)} \\
T^{\nu \sigma}_{\mu \lambda} & : & \text{Diehl notation (2007)}
\end{align*}
vector meson cross section

\[
\frac{d\sigma}{dx_B \, dQ^2 \, dt \, d\phi_s \, d\phi \, d\cos \theta \, d\varphi} \sim \frac{d\sigma}{dx_B \, dQ^2 \, dt} \, W(x_B, Q^2, t, \phi_s, \phi, \cos \theta, \varphi)
\]

production and decay angular distributions \(W \) decomposed:

\[
W = W_{UU} + P_l W_{LU} + S_L W_{UL} + P_l S_L W_{LL} + S_T W_{UT} + P_l S_T W_{LT}
\]

parametrized by helicity amplitudes \(T_{\lambda \lambda'} \) or \(T^{\nu \sigma}_{\mu \lambda} \):

- Schilling, Wolf (1973)

or alternatively by spin-density matrix elements (SDMEs):

- Diehl notation (2007)
(un)natural-parity exchange

Regge theory: the diffractive production of vector meson via an exchange of a particle

\[e \rightarrow e' \]

\[p \rightarrow p' \]

\[Q^2 \]

\[W^2 \]

\[t \]

\[\gamma^* \]

\[V \]

natural parity

\[P = (-1)^J \]: exchange of \(\rho, \omega, f_2, a_2 \)

or pomeron

\[\propto M/W \]

unnatural parity

\[P = -(-1)^J \]: exchange of \(\pi, a_1, b_1 \)

\[\propto (M/W)^2 \]

unnatural-parity exchange contribution is expected only at lower values of \(W \)
Regge theory: the diffractive production of vector meson via an exchange of a particle

- **natural parity**

 \[P = (-1)^J : \text{exchange of } \rho, \omega, f_2, a_2 \]

- **unnatural parity**

 \[P = -(1)^J : \text{exchange of } \pi, a_1, b_1 \]

\[\propto \frac{M}{W} \]

- unnatural-parity exchange contribution is expected only at lower values of \(W \)

GPD formalism: generalized to characterize the symmetry properties of amplitudes under

- **natural parity**

 \[\text{related to GPDs } H \text{ and } E \]

- **unnatural parity**

 \[\text{related to GPDs } \tilde{H} \text{ and } \tilde{E} \]

- **pomeron exchange** \(\Rightarrow \) **gluon exchange**

 - only **NPE**

- **reggeon exchange** \(\Rightarrow \) **quark exchange**

 - **NPE and UPE**
exclusive vector meson sample

- no recoil proton detection
- elastic scattering:
 \[\Delta E = \frac{M_{x}^2 - M^2}{2M} \approx 0 \]
- only little energy transferred to the target
 \[t = (q - v)^2 \]
- transverse four-momentum transfer is used
 \[t' = t - t_0 \]
- main contribution at small values of \(\Delta E \) and \(t' \)
- non-exclusive events:
 \[\Delta E > 0 \]
- SIDIS background estimated by PYTHIA MC
ρ^0: unpolarized & beam-polarized SDMEs

SDMEs shown according to hierarchy of NPE helicity amplitudes:

$$|T_{00}|^2 \sim |T_{11}|^2 \gg |T_{01}|^2 > |T_{10}|^2 \sim |T_{-11}|^2$$

\(\rho^0 - \phi: \) comparison

SDMEs shown according to hierarchy of NPE helicity amplitudes:

\[
|T_{00}|^2 \sim |T_{11}|^2 \gg |T_{01}|^2 > |T_{10}|^2 \sim |T_{-11}|^2
\]

HERMES PRELIMINARY

- \(\rho^0 \) proton, \(\langle Q^2 \rangle = 1.9 \text{ GeV}^2, \langle W \rangle = 5 \text{ GeV} \)
- \(\phi \) proton and deuteron

A: \(\gamma_L \rightarrow V_L^0 \) & \(\gamma_T \rightarrow V_T^0 \)

B: Interference \(\gamma_L \rightarrow V_L^0 \) & \(\gamma_T \rightarrow V_T^0 \)

C: \(\gamma_T \rightarrow V_L^0 \)

D: \(\gamma_L \rightarrow V_T^0 \)

E: \(\gamma_T \rightarrow V_{0-T}^0 \)

- unpolarized SDMEs: \(W_{UU} \)
- beam-polarized SDMEs: \(W_{UL} \)
- polarized SDMEs have been measured by HERMES for the first time
 - no statistically significant difference between proton and deuteron
 - no s-channel helicity violation
- hierarchy of amplitudes:
 \(T_{00} \sim T_{11} \)
 \(T_{01} \approx T_{10} \approx T_{-11} \approx 0 \)
ρ^0: phase difference δ between T_{00} and T_{11}

\begin{align*}
\delta (\text{deg}) & \begin{cases}
\square & \text{(□) proton (integrated)} \\
\bullet & \text{(○) deuteron (integrated)}
\end{cases} \\
\end{align*}

\[\cos \delta = \frac{2\sqrt{\epsilon (\Re r_{10}^7 - \Im r_{10}^6)}}{\sqrt{r_{00}^{04} (1 - r_{00}^{04} + r_{1-1}^{1} - \Im r_{1-1}^{2})}} \]

\[\sin \delta = \frac{2\sqrt{\epsilon (\Re r_{10}^8 - \Im r_{10}^7)}}{\sqrt{r_{00}^{04} (1 - r_{00}^{04} + r_{1-1}^{1} - \Im r_{1-1}^{2})}} \]

\[|\delta| \text{ obtained from unpolarized SDMEs:} \]

\[\text{sign of } \delta \text{ obtained from polarized SDMEs:} \]
\[(\text{for the first time)}\]

\[\text{results on } \delta \text{ (in degrees):} \]
- proton: $|\delta| = 26.4 \pm 2.3_{\text{stat}} \pm 4.9_{\text{sys}}$; $\delta = 30.6 \pm 5.0_{\text{stat}} \pm 2.4_{\text{sys}}$
- deuteron: $|\delta| = 29.3 \pm 1.6_{\text{stat}} \pm 3.6_{\text{sys}}$; $\delta = 36.3 \pm 3.9_{\text{stat}} \pm 1.7_{\text{sys}}$

\[\text{values are consistent} \]
- with each other
- with H1 results: $|\delta| = 21.5 \pm 4.3_{\text{stat}} \pm 5.3_{\text{sys}}$
comparison with a GPD model

$\frac{1-r_{00}}{2}$ r_{1-1}^1 $-\text{Im } r_{1-1}^2$

$\text{Re } r_{10}^5$ $\text{Im } r_{10}^6$

Q^2-dependence calculated for 3 different W values:

$W = 5 \text{ GeV (HERMES)}$

$W = 10 \text{ GeV (COMPASS)}$

$W = 90 \text{ GeV (H1, ZEUS)}$

$\gamma_L^* \to \rho_L^0$ and $\gamma_T^* \to \rho_T^0$

$1 - r_{00}^{04} \propto r_{1-1}^1 \propto -\text{Im } r_{1-1}^2 \propto T_{11}$

describe data for various W-ranges

interference of $\gamma_L^* \to \rho_L^0$ and $\gamma_T^* \to \rho_T^0$

$r_{10}^5 \propto -\text{Im } r_{10}^6 \propto T_{00}$ and T_{11} interference

model does not describe the data

model uses phase difference $\delta = 3.1$ degree between T_{00} and T_{11}

HERMES result: $\delta \approx 30$ degree
Observation of Unnatural-Parity Exchange

UPE contributions measured from SDMEs:

\[
u_1 = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^{1} - 2r_{1-1}^{1}, \quad u_2 = r_{11}^{5} + r_{1-1}^{5}, \quad u_3 = r_{11}^{8} + r_{1-1}^{8}
\]

The combinations of SDMEs expected to be the zero in case of NPE dominance.

Proton:

\[
u_1 = 0.125 \pm 0.021_{\text{stat}} \pm 0.050_{\text{sys}}
\]

Deuteron:

\[
u_1 = 0.091 \pm 0.016_{\text{stat}} \pm 0.046_{\text{sys}}
\]

The UPE contribution is \(W\)-dependent.
ϕ: observation of unnatural-parity exchange

\[U_1 = 1 - r_{00} + 2r_{1-1}^0 - 2r_{1-1} - 2r_{11}^1 \]

\[U_2 = r_{1-1}^5 + r_{11}^5 \]

\[U_3 = r_{1-1}^8 + r_{11}^8 \]

\[Q^2 (\text{GeV}^2) \]

\[-t' (\text{GeV}^2) \]

- $u_1 = 0.02 \pm 0.07_{\text{stat}} \pm 0.16_{\text{sys}}$
- $u_2 = -0.03 \pm 0.01_{\text{stat}} \pm 0.03_{\text{sys}}$
- $u_3 = -0.05 \pm 0.12_{\text{stat}} \pm 0.07_{\text{sys}}$

no signal of unnatural-parity exchange

Expected since dominant contribution to the production is from two gluon exchange
transverse SDMEs: $n_{\mu\mu}'$ and $s_{\mu\mu}'$

- measured for the first time

 - average kinematics:
 - $\langle -t' \rangle = 0.13$ GeV2
 - $\langle x_B \rangle = 0.09$
 - $\langle Q^2 \rangle = 2.0$ GeV2

- related to the proton helicity-flip amplitude

- suppressed by a factor $\sqrt{-t}/2M_p$

SDME values

- **Im (n$^{++}_L + n^{00}_T$)**
- **Im (n$^{0+}_L - n^{+0}_T$)**
- **Im n$^{--}_T$**
- **Im n$^{00}_L$**
- **Im (s$^{++}_L + s^{00}_T$)**
- **Im (s$^{0+}_L - s^{+0}_T$)**
- **Im n$^{+0}_L$**
- **Im n$^{0+}_L$**
- **Im s$^{00}_L$**
- **Im s$^{++}_L$**

Dominant transitions

- $\gamma^* \rightarrow \rho^0_L$
- $\gamma^* \rightarrow \rho^0_T$

Single spin flip

- $\gamma^* \rightarrow \rho^1_T$

Double spin flip

- $\gamma^* \rightarrow \rho^2_T$
'transverse' SDMEs: $n_{\mu\mu}'$ and $s_{\mu\mu}'$

\[\gamma_L^* \rightarrow \rho_L^0 \text{ and } \gamma_T^* \rightarrow \rho_T^0 \]

Im s_{--}^- and Im($s_{0+}^0 - s_{0+}^0$): deviate from 0 by 2.5\(\sigma\)

expected $s_{\mu\mu}' < n_{\mu\mu}'$ (if identical indices)

s_{--}^- and Im s_{0+}^0 involve

-Manaenkov (2008)-

the biggest NPE amplitudes

N_{--}^- or N_{0+}^0

the biggest UPE amplitude

U_{++}^+

signal for unnatural-parity exchange

related to GPDs \bar{H} and \bar{E}

- Ami Rostomyan - p. 14
'transverse' SDMEs: $n_{\mu\mu'}^{\nu\nu'}$ and $s_{\mu\mu'}^{\nu\nu'}$

\[\gamma_L^* \rightarrow \rho_L^0 \quad \text{and} \quad \gamma_T^* \rightarrow \rho_T^0 \]

- Im s_{--}^{0+} and Im $(s_{0+}^{00} - s_{0+}^{00})$: deviate from 0 by 2.5σ
- expected $s_{\mu\mu'}^{\nu\nu'} < n_{\mu\mu'}^{\nu\nu'}$ (if identical indices)
- Im n_{-0}^{++}: involve
 - the biggest NPE amplitudes N_{--} or N_{00}^{0+}
 - the biggest UPE amplitude U_{--}^{++}
- signal for unnatural-parity exchange
 - related to GPDs \vec{H} and \vec{E}
- Im n_{00}^{00}: 2.5σ deviation from 0

-Manaenkov (2008)-
\(\rho^0\): transverse target-spin asymmetry

Theoretically at leading order in \(1/Q\)

\((\gamma^*_L \rightarrow \rho^0_L)\):

\[A_{UT}^{\sin(\phi-\phi_s)} = \frac{\text{Im} n_{00}^{00}}{u_{00}}\]

Asymmetry in terms of GPDs

\[A_{UT}^{\sin(\phi-\phi_s)} \propto \frac{E}{H} \propto \frac{E^q + E^g}{H^q + H^g}\]

Depends linearly on the helicity-flip GPDs \(E^q, g\)

No kinematic suppression \(E^q, g\) with respect to \(H^q, g\)
ρ^0: transverse target-spin asymmetry

- Theoretically, at leading order in $1/Q$ ($\gamma^*_L \to \rho^0_L$):

$$A^\text{sin}(\phi - \phi_s)_{UT} = \frac{\text{Im } n_{00}^{00}}{u_{00}^{00}}$$

- Asymmetry in terms of GPDs:

$$A^\text{sin}(\phi - \phi_s)_{UT} \propto \frac{E}{H} \propto \frac{E^q + E^g}{H^q + H^g}$$

- Experimentally:

$$A^{\gamma^*_L}(\phi, \phi_s)_{UT} = \frac{\text{Im } (n_{++}^{00} + \epsilon n_{00}^{00})}{u_{++}^{00} + \epsilon u_{00}^{00}}$$

- u_{++}^{00} and n_{++}^{00} are expected to be negligible.

- Similarly, $\gamma^*_T \to \rho^0_T$:

$$A^{\gamma^*_T}(\phi, \phi_s)_{UT} = \frac{\text{Im } (n_{++}^{++} + n_{--}^{++} + 2\epsilon n_{00}^{++})}{u_{++}^{++} + u_{--}^{++} + 2\epsilon u_{00}^{++}}$$
$$\rho^0 : \text{transverse target-spin asymmetry}$$

- theoretically at leading order in $1/Q$ ($\gamma^*_L \to \rho^0_L$):

 $$A_{UT}^{\sin(\phi-\phi_s)} = \frac{\text{Im } n_{00}^{00}}{u_{00}^{00}}$$

- asymmetry in terms of GPDs

 $$A_{UT}^{\sin(\phi-\phi_s)} \propto \frac{E}{H} \propto \frac{E^q + E^g}{H^q + H^g}$$

- experimentally:

 $$A_{UT}^{\gamma^*_L}(\phi, \phi_s) = \frac{\text{Im}(n_{++}^{00} + \epsilon n_{00}^{00})}{u_{++}^{00} + \epsilon u_{00}^{00}}$$

- u_{++}^{00} and n_{++}^{00} are expected to be negligible

- similarly, $\gamma^*_T \to \rho^0_T$:

 $$A_{UT}^{\gamma^*_T}(\phi, \phi_s) = \frac{\text{Im}(n_{++}^{++} + n_{+0}^{00} + 2\epsilon n_{00}^{++})}{u_{++}^{++} + \epsilon u_{00}^{++} + 2\epsilon u_{00}^{++}}$$

- overall

 $A_{UT}^{\rho^0_L, \sin(\phi-\phi_s)} = -0.033 \pm 0.058$
\(\rho^0 \): comparison with GPD models

asymmetry in terms of GPDs

\[A_{UT}^{\sin(\phi - \phi_s)} \propto \frac{E}{H} \propto \frac{E^q + E^g}{H^q + H^g} \]

parametrization for \(H^q, \ H^\bar{q}, \ H^g \)

\(E^q \) is related to the total angular momenta \(J^u \) and \(J^d \)

predictions for \(J^d = 0 \)

\(E^\bar{q} \) and \(E^g \) are neglected

data favors positive \(J^u \)

statistics too low to reliably determine the value of \(J^u \) and its uncertainty

within the statistical uncertainty in agreement with theoretical calculations

indication of small \(E^g \) and \(E^\bar{q} \)?

other GPD model calculations

- Goeke, Polyakov, Vanderhaeghen (1999)-
- Goloskokov, Kroll (2007)-
- Diehl, Kugler (2008)-
ω: transverse target-spin asymmetry

6 azimuthal moments extracted using integrated angular distributions

due to low statistics no \(\omega_L/\omega_T \) separation

predictions for large asymmetry
\[A_{\sin(\phi-\phi_s)}^{\omega T} \approx -0.10 \]

indication of negative \(\sin(\phi - \phi_s) \) amplitude
\[A_{\sin(\phi-\phi_s)}^{\omega UT} = -0.22 \pm 0.16_{\text{stat}} \pm 0.11_{\text{sys}} \]

no contradiction with \(\rho^0 \) predictions
\[A_{\sin(\phi-\phi_s)}^{\rho^0 UT} \propto \Im \left\{ \frac{2E^u + E^d}{2H^u + H^d + H^g} \right\} \]
\[A_{\sin(\phi-\phi_s)}^{\omega UT} \propto \Im \left\{ \frac{2E^u - E^d}{2H^u - H^d} \right\} \]
exclusive π^+ production: $ep \rightarrow e' \pi^+(n)$

- no recoil nucleon detection
- select exclusive π^+ reaction through the missing mass technique:

$$M_x^2 = (P_e + P_p - P_{e'} - P_{\pi^+})^2$$

$$N_{excl} = (\pi^+ - \pi^-)_{data} - (\pi^+ - \pi^-)_{MC}$$

| π^+ | exclusive π^+ | VM_{π^+} | SIDIS |
| π^- | VM_{π^-} | SIDIS |

$\pi^+ - \pi^-$ yield difference was used to subtract the non exclusive background

- exclusive peak centered at the nucleon mass
- exclusive MC based on GPD model
kinematic dependences of $A_{UT}^{\pi^+}$

6 azimuthal moments extracted according to

average kinematics:
$\langle -t' \rangle = 0.18$ GeV2
$\langle x_B \rangle = 0.13$
$\langle Q^2 \rangle = 2.38$ GeV2

no γ^*_L/γ^*_T separation

small overall value for leading asymmetry amplitude $A_{UT}^{\sin(\phi-\phi_s)}$

unexpected large overall value for asymmetry amplitude $A_{UT}^{\sin \phi_s}$

other moments: consistent with 0

evidence of contributions from transversely polarized photons

- Diehl, Sapeta (2005)-
theoretical interpretation of $A_{UT}^{\pi^+}$

leading azimuthal amplitude $A_{UT}^{\sin(\phi - \phi_s)}$
- not large asymmetry with possible sign change
- theoretical expectation: $A_{UT}^{\sin(\phi - \phi_s)} \propto \sqrt{-t'}$
- large negative asymmetry
 - Frankfurt et al. (2001)
 - Belitsky, Muller (2001)
- are the differences due to γ_T^*?
 - Goloskokov, Kroll (2009)
 - Bechler, Muller (2009)

azimuthal amplitude $A_{UT}^{\sin \phi_s}$
- no turnover towards 0 for $t' \to 0$
- milde t-dependence
- can be explained only by γ_L^* / γ_T^* interference
- predictions $A_{UT}^{\sin \phi_s} \approx \text{const}$
- non-vanishing model predictions: contribution from H_T

-Goloskokov, Kroll (2009)-
HERMES and GPDs

\[
\begin{align*}
\rho^0 & \rightarrow \pi^+ \\
\phi & \rightarrow \pi^0 \\
\omega & \rightarrow SDME \\
A_{UT} & \rightarrow SDME
\end{align*}
\]
ρ^0: observation of unnatural-parity exchange

UPE contributions measured from SDMEs:

$$u_1 = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^1 - 2r_{1-1}^1, \quad u_2 = r_{11}^5 + r_{1-1}^5, \quad u_3 = r_{11}^8 + r_{1-1}^8$$

UPE contributions expressed through amplitudes:

$$u_1 \propto \epsilon |U_{10}|^2 + 2|U_{11} + U_{1-1}|^2, \quad u_2 + iu_3 \propto (U_{11} + U_{1-1}) \ast U_{10}$$

the combinations of SDMEs expected to be the zero in case of NPE dominance:
\[\rho_{\mu \nu', \lambda \lambda'} \propto \sum_{\sigma} T_{\mu \lambda}^{\nu \sigma} (T_{\mu' \lambda'}^{\nu' \sigma})^* \]