HERMES highlights

HERA Symposium
Hamburg, Germany, 2010

Ami Rostomyan
(on behalf of the HERMES collaboration)
fixed target experiment
- longitudinally/transversely polarized or unpolarized internal gas target (H, D, He, N, ... Xe)

using self-polarizing HERA lepton beam
- cross section asymmetry in synchrotron radiation emission leads to build-up of transverse polarization (Sokolov-Ternov effect)

spin-rotators provide longitudinal polarization at HERMES interaction region
nucleon structure

proton = $uud + \text{sea} + \text{gluons}$

charge, momentum, magnetic moment, spin, vector charge, axial charge, tensor charge

- **momentum:**

$$\int_{0}^{1} x \left(\sum_{i} (q_{i}(x) + \bar{q}_{i}(x)) + g(x) \right) = 1$$

- quarks only carry $\approx 50\%$

- **spin 1/2:**

"You think you understand something? Now add spin..."

- **Jaffe**

- total quark spin contribution only $\approx 30\%$
using the spin in NMR

Nobel Prize, 1943: "for his contribution to the development of the molecular ray method and his discovery of the magnetic moment of the proton"

\[\mu_p = 2.5 \text{ nuclear magnetons, } \pm 10\% \quad (1933) \]

Proton spins are used to image the structure and function of the human body using the technique of magnetic resonance imaging.

Paul C. Lauterbur

Sir Peter Mansfield

Nobel Prize, 2003: "for their discoveries concerning magnetic resonance imaging"
where does the proton spin come from

Jaffe and Manohar spin sum rule
- longitudinal spin structure
 \[S_z = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L^q_z + L^g_z \]
- \(\Delta \Sigma \) and \(\Delta G \) can be measured in semi-inclusive deep inelastic \(ep \) scattering

Ji sum rule
- longitudinal spin structure
 \[S_z = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + J^q + J^g \]
 \[\frac{1}{2} \Delta \Sigma + L^q_z \]
- \(J^q \) and \(J^g \) accessible through exclusive \(ep \) scattering

Bakker, Leader, Trueman sum rule
- transversity sum rule (?)
 \[S_T = \frac{1}{2} = \frac{1}{2} \delta \Sigma + L^q_{ST} + L^g_{ST} \]
where does the proton spin come from

Jaffe and Manohar spin sum rule

\[S_z = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L^q_z + L^g_z \]

\(\Delta \Sigma \) and \(\Delta G \) can be measured in semi-inclusive deep inelastic \(e p \) scattering.

\(\Delta \Sigma \):

\(\Delta G \):

orbital angular momentum: relations to GPDs and TMDs

tensor charge: transversity sum rule (?)

\(J^q \) and \(J^g \) accessible through exclusive \(e p \) scattering.

Bakker, Leader, Trueman sum rule

\[S_T = \frac{1}{2} = \frac{1}{2} \delta \Sigma + L^q_{ST} + L^g_{ST} \]

transversity sum rule (?)
quark structure of the nucleon

integrated over transverse momentum

$$\sigma^{ep\rightarrow ehX} \propto \sum_q DF(x) \otimes \sigma^{eq\rightarrow eq} \otimes FF^q\rightarrow h(z)$$

\[f^q_1 = \quad g^q_1 = \quad h^q_1 = \]
unpolarized quarks and nucleons
longitudinally polarized quarks and nucleons
transversely polarized quarks and nucleons
quark structure of the nucleon

\[f_1^q = \quad g_1^q = \]

unpolarized quarks and nucleons
longitudinally polarized quarks
vector charge

\[f_1^q : \text{spin averaged} \]
(well known)

\[F_1(x) = \frac{1}{2} \sum_q e_q^2 f_1^q(x) \]
\[F_2(x) = x \sum_q e_q^2 f_1^q(x) \]
quark structure of the nucleon

\[f_1^q = \quad g_1^q = \]

unpolarized quarks and nucleons
longitudinally polarized quarks and nucleons

\[f_1^q: \text{spin averaged} \quad (\text{well known}) \]
vector charge

\[F_1(x) = \frac{1}{2} \sum_q e_q^2 f_1^q(x) \]

\[F_2(x) = x \sum_q e_q^2 f_1^q(x) \]

\[g_1^q: \text{helicity difference} \quad (\text{known}) \]
axial charge

\[g_1(x) = \frac{1}{2} \sum_q e_q^2 g_1^q(x) \]
quark structure of the nucleon

integrated over transverse momentum

\[\sigma^{ep \rightarrow ehX} \propto \sum_q DF(x) \otimes \sigma^{eq \rightarrow eq} \otimes FF^q \rightarrow h(z) \]

\(h^q_1 \): transversity
 (unmeasured for long time)

tensor charge
- chiral-odd \(h^q_1 \) involves quark helicity flip
- need to couple to chiral-odd FF: Collins FF

\(f^q_1 \): spin averaged
- well known

\(F_1 \):
- vector charge

\(F_2 \):
- axial charge

\(g^q_1 \):
- helicity difference
- known

\(g_1 \):
- tensor charge

unpolarized quarks and nucleons
longitudinally polarized quarks and nucleons
transversely polarized quarks and nucleons
quark structure of the nucleon

integrated over transverse momentum

\[\sigma^{ep \rightarrow e h X} \propto \sum_q h^q_1(x) \otimes \sigma^{eq \rightarrow eq} \otimes H^h_1,q \rightarrow (z) \]

\[h^q_1 = \begin{array}{c} \text{transversely polarized} \\
\text{quarks and nucleons} \end{array} \]

\[f^q_1: \text{spin averaged} \quad \text{(well known)} \]

\[F_1, F_2: \text{vector charge} \]

\[g^q_1(x): \text{tensor charge} \]

\[h^q_1: \text{transversity} \quad \text{(unmeasured for long time)} \]

\[\text{chiral-odd } h^q_1 \text{ involves quark helicity flip} \]

\[\text{need to couple to chiral-odd FF: Collins FF} \]

\[\text{unpolarized quarks and nucleons} \]

\[\text{longitudinally polarized quarks and nucleons} \]

\[\text{transversely polarized quarks and nucleons} \]
quark structure of the nucleon

transverse-momentum-dependent (TMD) DF

\[\sigma^{ep \rightarrow e h X} \propto \sum_q DF(x, p_T) \otimes \sigma^{eq \rightarrow eq} \otimes FF^q \rightarrow h(z, k_T) \]

\[D = \]

\[H_1^\perp = \]

\[
\begin{array}{c|c|c}
\text{quark} & \text{U} & \text{L} & \text{T} \\
\hline
\text{U} & f_1 & & h_1^\perp \\
\text{L} & & g_1 & h_{1L}^\perp \\
\text{T} & f_{1T}^\perp & & h_1 \\
& g_{1T}^\perp & & h_{1T}^\perp \\
\end{array}
\]
1-hadron production x-section \((ep \rightarrow ehX)\)

\[
d\sigma = d\sigma_{UU}^0 + \cos(2\phi)d\sigma_{UU}^1 + \frac{1}{Q}\cos(\phi)d\sigma_{UU}^2 + Pl\frac{1}{Q}\sin(\phi)d\sigma_{LU}^3 + \\
+ S_L \left[\sin(2\phi)d\sigma_{UL}^4 + \frac{1}{Q}\sin(\phi)d\sigma_{UL}^5 + Pl\left(d\sigma_{LL}^6 + \frac{1}{Q}\sin(\phi)d\sigma_{LL}^7 \right) \right] + \\
+ S_T \left[\sin(\phi - \phi_s)d\sigma_{UT}^8 + \sin(\phi + \phi_s)d\sigma_{UT}^9 + \sin(3\phi - \phi_s)d\sigma_{UT}^{10} + \right. \\
\left. \frac{1}{Q}\sin(2\phi - \phi_s)d\sigma_{UT}^{11} + \frac{1}{Q}\sin(\phi_s)d\sigma_{UT}^{12} + Pl\left(\cos(\phi - \phi_s)d\sigma_{LT}^{13} + \frac{1}{Q}\cos(\phi_s)d\sigma_{LT}^{14} + \frac{1}{Q}\cos(2\phi - \phi_s)d\sigma_{LT}^{15} \right) \right]
\]
"Collins-effect" accounts for the correlation between the transverse polarization of the fragmenting quark and the transverse momentum of the produced unpolarized hadron sensitive to quark transverse spin generates left-right (azimuthal) asymmetries in the direction of the outgoing parton.
Collins amplitudes

\[2 \langle \sin(\phi_S) \rangle^{\pi^+}_{\text{UT}} \]

\[2 \langle \sin(\phi_S) \rangle^{\pi^0}_{\text{UT}} \]

\[2 \langle \sin(\phi_S) \rangle^{\pi^-}_{\text{UT}} \]

\[2 \langle \sin(\phi_S) \rangle^{K^+}_{\text{UT}} \]

\[2 \langle \sin(\phi_S) \rangle^{K^-}_{\text{UT}} \]

\[h_1^q(x) \otimes H_{1\perp}^q, q(z) \]

final results!!!

non-zero Collins effect observed!
both Collins FF and transversity sizeable
Collins amplitudes for pions

$$h_1^q(x) \otimes H_{1,q}^\perp(z)$$

- positive amplitude for π^+
- compatible with zero amplitude for π^0
- negative amplitude for π^-
- large π^- asymmetry

role of disfavored Collins FF:

$$H_{1,\text{disfav}}^\perp \approx -H_{1,\text{fav}}^\perp$$

$$u \Rightarrow \pi^+; \quad d \Rightarrow \pi^- (\text{fav})$$

$$u \Rightarrow \pi^-; \quad d \Rightarrow \pi^+ (\text{disfav})$$

positive for π^+ and negative for π^-

$$h_1^u > 0$$

$$h_1^d < 0$$
Collins amplitudes for kaons

- K^+ amplitudes are similar to π^+ as expected from u-quark dominance
- K^+ are larger than π^+

- K^- consistent with zero
- $K^- (\bar{u}s)$ is all-sea object

Differences between amplitudes of π and K:
- Role of sea quarks in conjunction with possibly large FF
- Various contributions from decay of semi-inclusively produced vector-mesons
- The k_T dependences of the fragmentation functions
\[
d\sigma = d\sigma_{UU}^0 + \cos(2\phi)d\sigma_{UU}^1 + \frac{1}{Q}\cos(\phi)d\sigma_{UU}^2 + P_l\frac{1}{Q}\sin(\phi)d\sigma_{LU}^3 \\
+ S_L\left[\sin(2\phi)d\sigma_{UL}^4 + \frac{1}{Q}\sin(\phi)d\sigma_{UL}^5 + P_l\left(d\sigma_{LL}^6 + \frac{1}{Q}\sin(\phi)d\sigma_{LL}^7\right)\right] \\
+ S_T\left[\sin(\phi - \phi_s)d\sigma_{UT}^8 + \sin(\phi + \phi_s)d\sigma_{UT}^9 + \sin(3\phi - \phi_s)d\sigma_{UT}^{10}\right] \\
\]

Sivers distribution function \(f_{1T}^{q}(x, p_{T}^{2}) \) gives the correlation between parton transverse momentum and transverse spin of the nucleon

- non-zero Sivers function implies non-zero orbital angular momentum
- generates left-right (azimuthal) asymmetries
Sivers amplitudes for pions

\[2 \langle \sin(\phi - \phi_s) \rangle_{UT} = - \frac{\sum_q e_q^2 f_{1T}^q(x, p_T^2) \otimes w D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)} \]

\[\pi^+ \]
- significantly positive
- clear rise with \(z \)
- rise at low \(P_{h\perp} \), plateau at high \(P_{h\perp} \)
- dominated by \(u \)-quark scattering:

\[\sim - \frac{f_{1T}^{u\perp}(x, p_T^2) \otimes w D_1^{u\rightarrow \pi^+}(z, k_T^2)}{f_1^u(x, p_T^2) \otimes D_1^{u\rightarrow \pi^+}(z, k_T^2)} \]

\(u \)-quark Sivers \(DF < 0 \)
- non-zero orbital angular momentum

\[\pi^0 \]
- slightly positive

\[\pi^- \]
- consistent with zero
- \(u \)- and \(d \)-quark cancellation
- \(d \)-quark Sivers \(DF > 0 \)

- M. Burkardt (2002)
Sivers amplitudes for kaons

$K^+:
- χ significantly positive
- χ clear rise with z
- χ rise at low $P_{h\perp}$, plateau at high $P_{h\perp}$
- π^+/K^+ production dominated by scattering off u-quarks:

$$\propto - \frac{f^u_T(x, p_T^2) \otimes w D^u_{1\rightarrow \pi^+/K^+}(z, k_T^2)}{f^u_T(x, p_T^2) \otimes D^u_{1\rightarrow \pi^+/K^+}(z, k_T^2)}$$

- $\pi^+ \equiv | ud \rangle$, $K^+ \equiv | us \rangle \Rightarrow$ non trivial role of sea quarks

K^-
- χ slightly positive
"Pretzelosity"

\[d\sigma = d\sigma_{UU}^0 + \cos(2\phi) d\sigma_{UU}^1 + \frac{1}{Q} \cos(\phi) d\sigma_{UU}^2 + P_t \frac{1}{Q} \sin(\phi) d\sigma_{LU}^3 + S_L \left[\sin(2\phi) d\sigma_{UL}^4 + \frac{1}{Q} \sin(\phi) d\sigma_{UL}^5 + P_t \left(d\sigma_{LL}^6 + \frac{1}{Q} \sin(\phi) d\sigma_{LL}^7 \right) \right] + S_T \left[\sin(\phi - \phi_s) d\sigma_{UT}^8 + \sin(\phi + \phi_s) d\sigma_{UT}^9 + \sin(3\phi - \phi_s) d\sigma_{UT}^{10} \right] + \]

"pretzelosity" DF \(h_{1T}^q(x) \) gives a measure of the deviation of the "nucleon shape" from a sphere

\[\Rightarrow \]

correlation between parton transverse momentum and parton transverse polarization in a transversely polarized nucleon

it is expected to be suppressed w.r.t. \(f_1^q, g_1^q, h_1^q \)
\[\sin(3\phi - \phi_s) \] Fourier component

\[h_{1T}^q(x) \otimes H_{1T}^q(z) \]

suppressed by two powers of \(P_{h_{\perp}} \)
comparing to Collins and Sivers amplitudes
compatible with zero within uncertainties
\(h_{1T}^q(x) \) might be non-zero at higher \(P_{h_{\perp}} \)

\[2 \langle \sin(3\phi - \phi_s) \rangle \Rightarrow \]

\[\begin{array}{c}
\pi^+ \\
\pi^0 \\
\pi^-
\end{array} \]

\(10^{-1} \) \(x \) \(0.4 \) \(0.6 \) \(z \) \(0.5 \) \(1 \)

\(P_{h_{\perp}} \) [GeV]
extraction of transversity and Sivers function

\[A_{UT}^{\sin(\phi_+\phi_\pm)} \propto h_1(x) \otimes H_1^{\perp_q}(z) \]

\[A_{UT}^{\sin(\phi-\phi_\pm)} \propto f_{1,T}^\perp(x) \otimes D_1^q(z) \]

Known

- Anselmino et al. Phys. Rev. D 75 (2007) -

TSA in inclusive hadron production in p^+p

Measurements of $A_N = \frac{N_R - N_L}{N_R + N_L}$ in $p^+p \rightarrow \pi X$

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Energy (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANL (1976)</td>
<td>4.9</td>
</tr>
<tr>
<td>BNL (2002)</td>
<td>6.6</td>
</tr>
<tr>
<td>FNAL (1991)</td>
<td>19.4</td>
</tr>
<tr>
<td>RHIC (2008)</td>
<td>62.4</td>
</tr>
</tbody>
</table>

Interpretations:
- TMDs (Sivers effect)
- Twist-3 qg correlators

Suggest:
- Increase of A_N with increase of x_F
- Decrease of A_N with increase of p_T at fixed x_F
- $A_N \rightarrow 0$ at high p_T
TSA in inclusive hadron production in $p^\uparrow p$

Interpretations:
- TMDs (Sivers effect)
- Twist-3 qg correlators

Suggest:
- Increase of A_N with increase of x_F
- Decrease of A_N with increase of p_T at fixed x_F
- $A_N \to 0$ at high p_T

Plot:

$p + p \to \pi^0 + X$ at $\sqrt{s} = 200$ GeV

$<x_F> = 0.28$

- FPD data
- Sivers (E704 fit)
- Twist-3

$<x_F> = 0.32$

$<x_F> = 0.37$

$<x_F> = 0.43$

$<x_F> = 0.5$

$<x_F> = 0.6$

p_T, GeV/c

Better test of models needed!
TSA in inclusive hadron production $e^p \uparrow$

- up to date: all data coming from pp-scattering can be also measured in $e^p \rightarrow \pi X$

$A_N = \frac{N_R - N_L}{N_R + N_L} = \frac{2}{\pi} A_{UT} \sin \phi$

"The measurement of these predicted asymmetries allows a test of the validity of the TMD factorization, largely accepted for SIDIS processes with two scales (small P_T and large Q^2), but still much debated for processes with only one large scale (P_T), like the one we are considering here. A test of TMD factorization in such processes is of great importance for a consistent understanding of the large SSAs measured in the single inclusive production of large P_T hadrons in proton-proton collisions."

-Anselmino et al. (2009)-
$A_{UT}^\sin \phi \% \ p_T \ & \ x_F$

π^+ and K^+ asymmetries decrease at high P_T

- sign change for π^-
- A_N in $p^\uparrow p$ is larger than in $e p^\uparrow$
- u-quark dominance in $e p^\uparrow$ may explain the smaller size of π^- asymmetry
- positive K^- for $x_F \approx 0$
GPDs are 'hybrid' objects

Form factors

\[ep \rightarrow e' p' \]

GPDs

\[ep \rightarrow e' X p' \]

Parton density

\[ep \rightarrow e' X \]

- Parton's transverse localization \(b_\perp \) for a given longitudinal momentum fraction \(x \)
- Parton's transverse localization \(b_\perp \) for a given longitudinal momentum fraction \(x \)
- Parton's longitudinal momentum distribution \(q(x) \) at resolution scale \(1/Q^2 \)
GPDs are 'hybrid' objects

Form factors

\[ep \rightarrow e' p' \]

\[
\int_{-1}^{1} dx H^q(x, \xi, t, \mu^2) = F_1^q(t)
\]

\[
\int_{-1}^{1} dx E^q(x, \xi, t, \mu^2) = F_2^q(t)
\]

\[
\int_{-1}^{1} dx \tilde{H}^q(x, \xi, t, \mu^2) = G_A^q(t)
\]

\[
\int_{-1}^{1} dx \tilde{E}^q(x, \xi, t, \mu^2) = G_P^q(t)
\]

Parton density

\[ep \rightarrow e' X p' \]

\[ep \rightarrow e' X \]

- Parton density's transverse localization \(b_\perp \) for a given longitudinal momentum fraction \(x \)

- Parton's longitudinal momentum distribution \(q(x) \) at resolution scale \(1/Q^2 \)
Exclusive reactions, GPDs

\[S_z = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_z \]

Second \(x \)-moment of GPDs

\[J^q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \, [H^q(x, \xi, t) + E^q(x, \xi, t)] \]
\[J^g = \frac{1}{2} \lim_{t \to 0} \int_{0}^{1} dx \, [H^g(x, \xi, t) + E^g(x, \xi, t)] \]

\(x, \xi \) longitudinal momentum fractions
\(t \) squared four-momentum transfer

- an experimental evaluation is complicated
- get convolutions of GPDs \((F : H, E, \tilde{H}, \tilde{E}) \) and hard scattering functions

\[\mathcal{F}(\xi, t) = \sum_{q} \int_{-1}^{1} dx \, C_q(\xi, x) \, F^q(x, \xi, t) \]

the only presently known way
Deeply virtual compton scattering (DVCS)

\[\sigma_{ep} \propto |T_{BH}|^2 + |T_{DVCS}|^2 + T_{BH}T_{DVCS}^* + T_{BH}^*T_{DVCS} \]

Same initial and final states in DVCS and Bethe-Heitler \(\Rightarrow \) Interference!

Bethe-Heitler contribution:
- calculated in QED

DVCS contribution:
- HERMES: \(|T_{DVCS}|^2 < |T_{BH}|^2\)

Interference term:
- depend on a linear combination of Compton form factors
- access to GPD combinations through azimuthal asymmetries
beam helicity asymmetry

\[A_{LU}^I(\phi) = \sum_{n=1}^{2} A_{LU,I}^{\sin(n\phi)} \sin(n\phi) \]

\[A_{LU,DVCS}^{\sin \phi} \propto s_1^{DVCS} \sin \phi \]

\[A_{LU,I}^{\sin \phi} \]

- twist-2:
 \[\propto F_1 \text{Im} \mathcal{H} \]
 - large overall value
 - no kin. dependencies

\[A_{LU,DVCS}^{\sin \phi}, A_{LU,I}^{\sin 2\phi} \]

- twist-3
 - overall value compatible with 0
 - no kin. dependencies

model predictions:

- overshoot the magnitude of \(A_{LU,I}^{\sin \phi} \) by a factor of 2

-Ami Rostomyan-
beam charge asymmetry

\[A_{C}(\phi) = \sum_{n=0}^{3} A_C^{\cos(n\phi)} \cos(n\phi) \]

twist-2 GPDs: \(A_C^{\cos \phi}, A_C^{\cos 0\phi}

- strong \(t \)-dependence
- no \(x_B, Q^2 \) dependencies

\[A_C^{\cos \phi} \propto F_1 \Re \mathcal{H} \]

\[A_C^{\cos 0\phi} \propto -\frac{t}{Q} A_C^{\cos \phi} \]

\(A_C^{\cos(2\phi)} \approx 0 \): twist-3 GPDs
\(A_C^{\cos(3\phi)} \approx 0 \): gluon helicity-flip GPDs

theoretical predictions:
- does not describe the beam-helicity data, but in good agreement with this data

-AMI Rostomyan- – p. 26
GPDs, DVCS and HERMES

HERMES DVCS

<table>
<thead>
<tr>
<th>Amplitude Value</th>
<th>Hydrogen</th>
<th>Deuteron</th>
<th>Preliminary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_C^{\cos(0\phi)}$</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_C^{\cos \phi}$</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_C^{\cos(2\phi)}$</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_C^{\cos(3\phi)}$</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_C^{\sin \phi}$</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_C^{\sin(2\phi)}$</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_C^{\sin(0-\phi)}$</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_C^{\sin(0-\phi) \cos \phi}$</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_C^{\sin(0-\phi) \sin \phi}$</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image)

- Beam-charge asymmetry: $Re \mathcal{H}$
- Beam-helicity asymmetry: $Im \mathcal{H}$
- Transverse target-spin asymmetry: $Im(\mathcal{H} E)$
- Longitudinal target-spin asymmetry: $Im \tilde{\mathcal{H}}$
- Double-spin asymmetry: $Re \tilde{\mathcal{H}}$

Towards global fits!
longitudinal spin/momentum structure

DVCS

PDF

TMD

A_N

GPD

exclusive meson production

transverse spin/momentum structure
outlook