Compton Polarimetry at HERA, more than 10 years of operation

Avetik Airapetian for LPOL Group
August 24 2007
Outline

• Demand for electron polarization measurements: from HERMES to H1/ZEUS

• Polarimeters at HERA (TPOL ,LPOL, Cavity)

• LPOL under detailed look

• Conclusions & Suggestions for EIC
HERMES: Main Customer until 2000

- SPIN “crisis”

1987: EMC/CERN (μ p)

\[\Delta \Sigma = 0.12 \pm 0.09 \pm 0.14 \]

Contribution of quark spins to nucleon spin is very small

Most precise determination of $\Delta \Sigma$

\[\Delta \Sigma = 0.330 \pm 0.025 \pm 0.011 \pm 0.028 \]

HERMES: P. R. D 75 (2007) 012007
HERMES: Main Customer until 2000

Using hadron asymmetries:

\[h = \pi^\pm, K^\pm, p \]

Targets: \[H, D \]

First determination of sea quark polarisation:
consistent with zero.

After 2000: HERMES, H1 and ZEUS

\[\sigma^{CC}(e^\pm p) = (1 \pm P_e) \cdot \sigma^{CC}_{P_e=0}(e^\pm p) \]

- Linear dependence of \(\sigma^{CC} \) \(P_e \) confirmed
- Extrapolation to \(P_e = \pm 1 \),
- No sign of right-handed charged currents
H1 and ZEUS

- Asymmetry of two helicity states:
 \[A^{+-} = \frac{2}{P_L - P_R} \frac{\sigma_{P_R}^{+-} - \sigma_{P_L}^{+-}}{\sigma_{P_R}^{+-} + \sigma_{P_L}^{+-}} \]

- A≠0 at highest Q²:
- Evidence for parity violation in neutral currents
- At small distances 10⁻¹⁸ m
- Expect A⁺=−A⁻ in standard model

\[A = \frac{\sum_q e_q \nu_q (q + \bar{q})}{\sum_q e_q^2 (q + \bar{q})} \]
West Hall (TPOL): Principle of Measurement: Compton-Scattering

- kinematics described by 2 variables:
 - polar angle $\theta \leftrightarrow E_\gamma$ (photon energy)
 - azimuthal angle $\phi \Rightarrow y$ (vert. position)
- S_1, S_3: lin. & circ. polarisation of laser
- P_Y, P_Z: transv. & long. beam polarisation

$$\frac{d^2 \sigma}{dE \, d\phi} = \Sigma_0(E) + S_1 \Sigma_1(E) \cos 2\phi + S_3 (P_Y \Sigma_2 Y(E) \sin \phi + P_Z \Sigma_2 Z(E))$$

TPOL: measure (energy dependent) angular asymmetry
- up-down asymmetry very small (even at 65m!)
- need very precise position measurement (better than 10μm)
- distance from IP also has to be measured very precisely (not trivial)
Transverse Polarimeter (I)

Laser:
- continuous wave, $E_\lambda = 2.4$ eV, $\lambda = 514$ nm
- crossing angle: 3.1 mrad

Calorimeter:
- Tungsten-Scintillator-Sampling calo.
- segmented in upper and lower half
- four channels read out by wavelength shifters and photomultipliers:
 - up, down, left, right
Transverse Polarimeter (II)

- measured quantities:
 \[E_\gamma = E_{up} + E_{down} \]
 \[\eta = (E_{up} - E_{down}) / (E_{up} + E_{down}), \]
 \[y = y(\eta) \leq \text{main uncertainty!} \]
East Hall (Cavity-LPOL, LPOL): Principle of Measurement:

\[
\frac{d\sigma}{dE_\gamma} = \frac{d\sigma_0}{dE_\gamma}[1 + P_e P_\lambda A_z(E_\gamma)]
\]
Cavity Polarimeter: Setup

- laser
- ccd
- bellow
- pillar for mirror mount
- vacuum window
- pump
- cavity leg
- ccd
- p-diode for feedback
- QWP
- glan Thomson
Cavity uses LPOL Calorimeter

Wave length shifters
PMT
Scintillator plates
Tungsten plates

Test beam results

\begin{align*}
\text{ADC output} & \quad \text{CERN} \\
\text{Incident Energy (GeV)} & \\
\text{Deviation from Linearity (\%)} & \quad \text{DESY} \\
\text{Incident Energy (GeV)} & \\
\end{align*}

'r(E) = 1'
Cavity: Method of Measurement

An example for one single bunch
(taken in $4 + 4$ seconds)
Cavity: fitting procedure

- **Step 1:** Fit laser-off (brem.) spectrum to fix calorimeter related parameters

- **Step 2:** Fit laser-on spectra in two laser polarization states to get the beam polarization P_e & other beam/background related parameters

Caveat:
Brem. spectrum taken at slightly different beam conditions than the laser-on spectra

→ To be improved in further data taking, NOW OFFLINE analyses
TPOL and Cavity: Rise-Time Measurements

- Rise-Time measurements by Cavity-LPOL and TPOL during last week of HERA operations
TPOL and Cavity: Rise-Time Measurement

Note: 5 times increase of frequency of measurement by Cavity-LPONL
Compton Scattering:
e^+\gamma \rightarrow e'^+\gamma

Cross Section:
\[\frac{d\sigma}{dE_\gamma} = \frac{d\sigma_0}{dE_\gamma}[1 + P_e P_\lambda A_z(E_\gamma)] \]

- \(P_e \): longitudinal polarization of e beam
- \(P_\lambda \): circular polarization \((\pm 1)\) of laser beam

\(d\sigma_0, A_z \): known (QED)
Multi-Photon Mode

\[A_m = \frac{I_{3/2} - I_{1/2}}{I_{3/2} + I_{1/2}} = P_e P_A m A_p \]

\[A_p = \frac{\Sigma_{3/2} - \Sigma_{1/2}}{\Sigma_{3/2} + \Sigma_{1/2}} \]

Advantages:
- eff. independent of brems. bkg
- \(dP/P = 0.01 \) in 1 min
- in first approximation, independent from absolute energy calibration

Disadvantage:
- no easy monitoring of calorimeter performance
LPOL, LIVE

A. Most
S. Borissov
A. Simon
M. Beckman
B. Zihlmann
R. Fabbri
W. Lorenzon
W. Deconinck
J. Seibert
A. Airapetian

A. Airapetian EIC Polarimetry
Workshop August 24 2007
Longitudinal Polarimeter
(M. Beckmann et al. NIM A479 (2002) 334-348)

- Laser frequency doubled Nd:YAG
- $E_\lambda = 2.33 \text{ eV}$, with pulse length 3 ns
- Operated at 100 Hz, 200 mJ/pulse
LPOL: Details I

- Use HERA Clock and bunch structure to generate an appropriate trigger
- Depending on the type of trigger (Laser ON, OFF, BEAM ON, OFF) fire (don’t fire) the laser
- Produce right (left) circularly polarized laser pulse using a Pockels Cell (depending on trigger)
- Send to IP and get Compton photons (background signal) to calorimeter
- Open the GATE and read all information you need to calculate bunch polarization
- Analyze laser pulse after IP to monitor S3
LPOL: Details II

- Use HERA Clock and bunch structure to generate an appropriate trigger
- HERA electron bunches are separated by 96 ns. Depending on the fill there might be up to 180/220 bunches filled
LPOL: Details III

Trigger logic

- Depending on the type of trigger (Laser ON, OFF, BEAM ON, OFF), laser is fired (or not)

LPOL startup, Triggers
LPOL: Details IV

- Produce right (left) circularly polarized laser pulse using a Pockels Cell

- Laser travels ~80 m to IP
LPOL: Details V

- Send laser pulse to IP and get Compton photons (background signal) to calorimeter
LPOL: Details V

- Send laser pulse to IP and get Compton photons (background signal) to calorimeter
LPOL: Main Calorimeter

Calorimeter position

NaBi(WO₄)₂ crystal calorimeter

segmentation → position detection of Compton photons

NaBi(WO₄)₂ crystals: 22 x 22 x 200 mm³

- ρ : 7.57 g cm⁻²
- X₀ : 1.03 cm
- R_M : 2.38 cm
- σ⁺ : 12 ns
- rad. hard. : < 7 x 10⁷ rad
- n : 2.15

A. Airapetian EIC Polarimetry
Workshop August 24 2007
LPOL: Details VI

- Open the GATE and read every information you need to calculate bunch Polarization

An elegant way to estimate Pedestal

\[f(x) = a + b \cdot x \]

- \(a = 2.0016 \)
- \(b = 0.9905 \)
LPOL: Details VII

- Histogram for every event type and trigger

Correct for Pedestal, laser jitter, and gain matching. Then group in 220•2 histograms and calculate polarization for each bunch
LPOL: Details VIII

Analyze laser pulse after IP to monitor S3

Perform regular PC HV scans to ensure maximum and symmetric S3 at working voltage

<table>
<thead>
<tr>
<th>Source</th>
<th>(\Delta P_e / P_e) (%) (2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing Power (A_p)</td>
<td>± 1.2 (±0.9)</td>
</tr>
<tr>
<td>- response function</td>
<td></td>
</tr>
<tr>
<td>- single to multi photon transition</td>
<td></td>
</tr>
<tr>
<td>(A_p) long-term instability</td>
<td>± 0.5 (±0.4)</td>
</tr>
<tr>
<td>- PMT linearity (GMS system checked)</td>
<td></td>
</tr>
<tr>
<td>Gain mismatching</td>
<td>± 0.3</td>
</tr>
<tr>
<td>Laser light polarization</td>
<td>± 0.2</td>
</tr>
<tr>
<td>Pockels cell misalignment</td>
<td>± 0.4 (±0.3)</td>
</tr>
<tr>
<td>- (\lambda/2) plate (helicity dep. beam</td>
<td></td>
</tr>
<tr>
<td>shifts)</td>
<td></td>
</tr>
<tr>
<td>- laser-electron beam overlap</td>
<td></td>
</tr>
<tr>
<td>Electron beam instability</td>
<td>± 0.8 (±0.6)</td>
</tr>
<tr>
<td>- electron beam position changes</td>
<td></td>
</tr>
<tr>
<td>- electron beam slope changes</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>± 1.6</td>
</tr>
</tbody>
</table>

- comparison between LPOL and TPOL (1999)
LPOL error budget (2002-2007)

- Regularly check for possible false asymmetries with both sampling and crystal calorimeters
- Constantly monitor with GMS gain of both calorimeters (relative)
- Perform coordinate scans to check gain mismatching
- After every Pockels Cell change (they are subject of laser radiation damage) perform Pockels Cell HV scan to verify alignment
- Perform table offset scans to center Compton photons on calorimeter
- Vary laser power and check calorimeter response and measurement stability
- Alternate regularly between sampling and crystal calorimeters
LPOL error budget (2002-2007)

Have to supply OFFline LPOL measurements to Physics Analysers, but for preliminary results and numbers LPOL Group recommendation is used 2% as an upper limit for the LPOL systematic uncertainty.
LPOL: Accidents

- **Sep 2003**, 1 rad length Pb was not enough!

- To withstand synchrotron radiation from HERMES Transverse Magnet: replaced Pb with 1 rad length W, and monitored temperature

- **June 2004**, beam lost in LPOL area resulted in broken crystals!
LPOL: Our own Mistakes

- In Jan 2005 when rad damaged mirror was replaced, new mirror was mounted incorrectly (coating on wrong side): 3 spots instead of one!
Achievements: TPOL

GREEN light to SPIN physics at HERA (1991)

A. Airapetian EIC Polarimetry
Workshop August 24 2007
Achievements: **LPOL**

- 20 min measurement
 \[\frac{dP}{P} = 0.03 \text{ in each bunch} \]

 First measurement of BUNCH polarization:
 New tool for tuning for high polarization!
Achievements: **Cavity LPOL**

Data of Sept. 14, 2005

- The observation with cavity of the anti-correlation between the P_e values and the p-beam current

This effect has to be taken into account in the physics analyses

- Maybe will help for HERA Machine Monte Carlo simulations to pin down polarization risetime scale
Thanks to the People from whom I borrowed slides & graphs

- K.Rith HERA END of DATA Taking Symposium
- S.Schmitt H1&ZEUS talk at Moriond 2007
- W.Lorenzon various talks
- Beautiful, MultyTalent LPOL Group, who designed, built, and maintained LPOL at high level for more than 10 Years
Conclusions

• Compton MultiPhoton mode proved to be very robust in measuring electron/positron beam polarization in a high energy collider
• Polarisation (Polarimetry) is a tool to significantly enhance Physics Programs at many Research centers, therefore:
• It has to be included into design of the new machines and gain appropriate attention (see W. Deconinck’s presentation)