ρ^0 Transverse Target Spin Asymmetry at HERMES

A. Hayrapetyan

University of Michigan
for HERMES Collaboration

JLAB Exclusive Reactions at High Momentum Transfer, May 21, 2007
Outline

1. Physics behind our measurement, why ρ^0
 - Generalized Parton Distribution Functions and Ji sum rule
 - Why ρ^0, production mechanism and sensitivity

2. HERMES Experiment
 - Transverse Target Spin Asymmetry

3. Analysis
 - Data Processing
 - Exclusive Production
 - ρ_L^0, ρ_T^0 Separation

4. Results
 - Comparison with GPD prediction
 - Summary and Outlook
Outline

1. **Physics behind our measurement, why ρ^0**
 - Generalized Parton Distribution Functions and Ji sum rule
 - Why ρ^0, production mechanism and sensitivity

2. **HERMES Experiment**
 - Transverse Target Spin Asymmetry

3. **Analysis**
 - Data Processing
 - Exclusive Production
 - ρ_L^0, ρ_T^0 Separation

4. **Results**
 - Comparison with GPD prediction
 - Summary and Outlook
Physics behind our measurement, why ρ^0

HERMES Experiment

Analysis

Results

Generalized Parton Distribution Functions and Ji sum rule

- Vector mesons ($..\rho, \phi..$): unpolarized GPDs: $H E$(AUT sensitive)
- Ji sum rule: (Ji,PRL 78(1997) 610)

$$\frac{1}{2} \int_{-1}^{1} dx \ x \ [H(x, \zeta, t) + E(x, \zeta, t)] \ t \rightarrow 0 \ J_q$$

A.Hayrapetyan

ρ^0 TTSA at HERMES
Physics behind our measurement, why ρ^0

HERMES Experiment

Analysis

Results

Why ρ^0, production mechanism and sensitivity

Sensitive to quark and gluon exchange

$$\gamma^*(q) + p \rightarrow \rho^0_L + p$$

$$Q^2 = 2.5 \text{ GeV}^2$$

$$-t = 0.25 \text{ GeV}^2$$

$$J^d = 0$$

HERMES

A. Hayrapetyan

UofM

ρ^0 TTSA at HERMES

-Goeke, Polyakov, Vanderhaeghen (2001)-
Outline

1. Physics behind our measurement, why ρ^0
 - Generalized Parton Distribution Functions and Ji sum rule
 - Why ρ^0, production mechanism and sensitivity

2. HERMES Experiment
 - Transverse Target Spin Asymmetry

3. Analysis
 - Data Processing
 - Exclusive Production
 - ρ_L^0, ρ_T^0 Separation

4. Results
 - Comparison with GPD prediction
 - Summary and Outlook
THE POLARISED TARGET

- Pure Gaseous Polarised Target, with high Polarisation ≈ 75
- Flip of helicity every 90 sec in 0.5 sec, very small systematics
Physics behind our measurement, why ρ^0

Transverse Target Spin Asymmetry

Production Kinematics, angles

- Angles define according to Trento convention
 \[A_{UT} = -\frac{\pi}{2} A_{GPV} \]
- ϕ is angle between lepton and hadron planes
- \vec{S}_\perp is spin vector transverse to photon momentum
- ϕ_s is angle between lepton plane and \vec{S}_\perp
Physics behind our measurement, why ρ^0

HERMES Experiment

Analysis

Results

Transverse Target Spin Asymmetry

Transverse target polarization relative to lepton beam direction (measured):

$$A_{UT}^l(\phi, \phi_s) = \frac{1}{P_T} \frac{d\sigma(\phi,\phi_s) - d\sigma(\phi,\phi_s+\pi)}{d\sigma(\phi,\phi_s) + d\sigma(\phi,\phi_s+\pi)}$$

Transverse target polarization relative to virtual photon direction:

$$A_{UT}^{\gamma^*}(\phi, \phi_s) = \frac{1}{S_\perp} \frac{d\sigma(\phi,\phi_s) - d\sigma(\phi,\phi_s+\pi)}{d\sigma(\phi,\phi_s) + d\sigma(\phi,\phi_s+\pi)}$$

$$P_T A_{UT}^l(\phi_s) = S_T(\theta_\gamma, \phi_s) A_{UT}^{\gamma^*}(\phi_s) + S_L(\theta_\gamma, \phi_s) A_{UL}^{\gamma^*}$$

$$\left| \frac{S_L}{S_T} \right| < 0.15$$
Outline

1. Physics behind our measurement, why ρ^0
 - Generalized Parton Distribution Functions and Ji sum rule
 - Why ρ^0, production mechanism and sensitivity

2. HERMES Experiment
 - Transverse Target Spin Asymmetry

3. Analysis
 - Data Processing
 - Exclusive Production
 - ρ^0_L, ρ^0_T Separation

4. Results
 - Comparison with GPD prediction
 - Summary and Outlook
Kinematic cuts:
\[W^2 > 4 \text{GeV}^2, \quad Q^2 > 1 \text{GeV}^2, \quad y < 0.85 \]

Exclusive cuts:
\[0.6 < M_{2\pi} < 1.0 \text{GeV}, \quad \Delta E < 0.6 \text{GeV}, \quad -t' < 0.4 \text{GeV}^2 \]

Take into account beam polarization related terms in fit procedure

Monte Carlo studies
- Determine background contamination
- Acceptance effects
- Cross Contamination between asymmetry moments
- Check L-T separation
- Kinematic dependencies of Acceptance/Asymmetry
Physics behind our measurement, why ρ^0

- $ep \rightarrow e'p\rho^0$, $\rho^0 \rightarrow \pi^+\pi^-$
- Exclusive ρ^0 through Energy and Momentum transfer
- $\Delta E = \frac{M_x^2 - M_p^2}{2M_p}$, $t' = t - t_0$

![Graph showing ΔE vs Yield and $M_{2\pi}$ vs Events](image_url)
Physics behind our measurement, why ρ^0

HERMES Experiment

Analysis

Results

ρ_L^0, ρ_T^0 Separation

Each ρ^0 polarization state has a characteristic decay angular distribution

Can use ρ^0 CM angle $\Theta_{\pi\pi}$ of π-meson to separate ρ_L^0, ρ_T^0

\[
W(P_T, \cos \theta_{\pi\pi}, \phi, \phi_s) \propto \cos^2 \theta_{\pi\pi} r_{00}^{04} \left(1 + P_T A_{UT, \rho_L}^l(\phi, \phi_s) + A_{UU, \rho_L}(\phi) \right) + \frac{1}{2} \sin^2 \theta_{\pi\pi} (1 - r_{00}^{04}) \left(1 + P_T A_{UT, \rho_T}^l(\phi, \phi_s) + A_{UU, \rho_T}(\phi) \right)
\]

(Diehl, Sapeta: hep-ph/0503023)
Outline
1. Physics behind our measurement, why ρ^0
 - Generalized Parton Distribution Functions and Ji sum rule
 - Why ρ^0, production mechanism and sensitivity
2. HERMES Experiment
 - Transverse Target Spin Asymmetry
3. Analysis
 - Data Processing
 - Exclusive Production
 - ρ^0_L, ρ^0_T Separation
4. Results
 - Comparison with GPD prediction
 - Summary and Outlook
Physics behind our measurement, why ρ^0...
Data hints positive J^U

In agreement with HERMES DVCS result
Summary and Outlook

- First extraction of $A_{UT}^{\sin(\phi - \phi_s)}$
- In SCHC separately for ρ_0^L and ρ_0^T by using a fit on the $\phi, \phi_s, \cos \theta_{\pi\pi}$ distributions
- ϕ-meson A_{UT} results coming soon