Study of Spin Density Matrix Elements in hard exclusive electroproduction of ϕ meson on proton and deuteron at HERMES.

B. Marianski
bohdan@fuw.edu.pl
Andrzej Soltan Institute for Nuclear Studies, Warsaw, Poland
on behalf of HERMES Collaboration

DIS2011 - XIX International Workshop on Deep-Inelastic Scattering and Related Subjects, Newport News, VA USA
Vector meson Spin Density Matrix Elements (SDMEs).
SDMEs and general properties of helicity amplitudes.
HERMES Experiment and data processing.
SDMEs for the integrated data.
Unnatural-Parity Exchange for ϕ meson.
Summary.
Spin Density Matrices in reaction

\[e + N \rightarrow e' + \phi + N \]

- \(e \rightarrow e' + \gamma^* \) (QED). Spin-density matrix \(\rho^U = U_{\gamma, \gamma'}(\epsilon, \Phi) = U_{\gamma, \gamma'}^U + P_{\text{beam}} U_{\gamma, \gamma'}^L \) of the virtual photon is known. U - unpolarized, L - polarized beam

- \(\gamma^* + N \rightarrow \phi + N \rightarrow K^+ + K^- + N \) (QCD). Vector-meson spin-density matrix \(\rho_{\lambda V \lambda' V} \) is expressed by helicity amplitudes \(F_{\lambda V \lambda' V_1; \lambda N \lambda N}(W, Q^2, t') \). In CM frame of \(\gamma^* N \) is given by the von Neumann formula:

\[
\rho_{\lambda V \lambda' V} = \frac{1}{2N} \sum \lambda_N \lambda' N_{\lambda' N} \lambda N_{\lambda N} F_{\lambda V \lambda' V_1; \lambda N \lambda N} \rho_{\lambda N \lambda N} \rho_{\lambda' N \lambda' N} \rho_{\lambda' V \lambda' V_1} \rho_{\lambda V \lambda V_1}
\]

- \(\rho_{\lambda V \lambda' V} \) decompose into the set of nine hermitian matrices \((3 \times 3) \Sigma^\alpha \) \((\alpha = 0 \div 3 - \text{transv.}, 4 - \text{long.}, 5 \div 8 - \text{interf.}) \),

\[
\rho_{\lambda V \lambda' V} = \rho_{\lambda V \lambda' V}^\alpha \quad \alpha = 1, 2, 3, 5, 6, 7, 8.
\]

When we can not separate transverse and longitudinal photons, Spin Density Matrix Elements (SDMEs) are defined:

\[
r^{04}_{\lambda V \lambda' V} = \frac{\rho^{04}_{\lambda V \lambda' V}}{1 + \epsilon R}, \quad \rho^{04}_{\lambda V \lambda' V} = \frac{\rho^{04}_{\lambda V \lambda' V}}{(1 + \epsilon R)}, \quad \epsilon = 1, 2, 3,
\]

\[
r^\alpha_{\lambda V \lambda' V} = \begin{cases}
\rho^\alpha_{\lambda V \lambda' V} \frac{(1 + \epsilon R)}{(1 + \epsilon R)}, & \alpha = 5, 6, 7, 8, \\
\sqrt{R} \rho^\alpha_{\lambda V \lambda' V} & \alpha = 1, 2, 3
\end{cases}
\]

- \(R = \frac{\sigma_L}{\sigma_T} \)
Angular distribution in reaction

\[e + N \rightarrow e' + \phi + N \rightarrow e' + K^+ + K^- + N \]

- \(\phi \Rightarrow K^+K^- \) (conservation of \(\vec{J} \))

\[|\phi; 1m \rangle \rightarrow |K^+K^-; 1m \rangle \Rightarrow Y_{1m}(\cos(\theta), \phi), \quad (m = \pm 1, 0) \]

Angular distribution \(W(\Phi, \phi, \cos \Theta) \) depends linearly on \(r_{\lambda_\nu \lambda'_{\nu'}}^\alpha \) and beam polarization \(P_b \).

For longitudinally polarized beam and unpolarized target there are 23 SDMEs, (15 unpolarized and 8 polarized) which are determined from the fit of angular distribution of Kaons from decay \(\phi \Rightarrow K^+K^- \).

SDMEs are bilinear combination of helicity amplitudes.
General properties of helicity amplitudes

\[F_{\lambda_V \lambda'_N; \lambda_N \lambda_N} = T_{\lambda_V \lambda'_N; \lambda_N \lambda_N} + U_{\lambda_V \lambda'_N; \lambda_N \lambda_N} \]

- **T** - natural-parity exchange (NPE) \((P = (-1)^J)\)
- **U** - unnatural-parity exchange (UPE) \((P = -(−1)^J)\)

On unpolarized target **nucleon-helicity-flip** amplitudes are suppressed. \(T_{\lambda_V \lambda_N} = T_{\lambda_V \frac{1}{2} \lambda_N \frac{1}{2}}\)

Helicity conserving - \(T_{00}, T_{11}\), helicity non conserving - \(T_{01}, T_{10}, T_{1-1}\)

The dominance of diagonal transitions is called s-channel helicity conservation (SCHC).

\[|T_{00}|^2 \sim |T_{11}|^2 \gg |T_{01}|^2 > |T_{10}|^2 \sim |T_{1-1}|^2. \]

NPE \((J^P = 0^+, 1^-)\) amplitudes \(T_{\lambda_V \lambda_N}\) (Two-gluon exchange = pomeron, \(\rho, \omega, a_2, \ldots\) reggeons = \(q\bar{q}\) exchange). UPE \((J^P = 0^-, 1^+)\) amplitudes \(U_{\lambda_V \lambda_N}\) (\(\pi, a_1, b_1, \ldots\) reggeons = \(q\bar{q}\) exchange)
Hermes Detector was Two Identical Halves of Forward Spectrometer

- Beam e^\pm, $P = 27.56$ GeV/c longitudinal polarization $\sim 55\%$.
- Target longitudinally, transversely polarized H or D or unpolarized gas target.
- Acceptance: $|\Theta_x| < 170$ mrad, $40 < |\Theta_y| < 140$ mrad.
- Resolution $\delta P/P \leq 1\%, \delta \Theta \leq 0.6$ mrad.
- PID: RICH, TRD, Preshower, Calorimeter.
Exclusive ϕ-meson production at HERMES

- $W = 3.0 \div 6.3$ GeV, $<W> = 4.8$ GeV total number of events (1996-2000) $W^2 = (q+p)^2$
- $Q^2 = 1.0 \div 7.0$ GeV2, $<Q^2> = 1.9$ GeV2 Deuteron: $\rho^0 - 1038$
- $x_B = 0.01 \div 0.35$, $<x_B> = 0.08$ Hydrogen: $\rho^0 - 711$
- $0 \leq -t' \leq 0.4$ GeV2, $<-t'> = 0.13$ GeV2 with $t' = t - t_{min}$

$\Delta E = \frac{M_X^2 - M_p^2}{2M_p}$ with $M_X^2 = (p + q - p_{K+} - p_{K-})^2$ and M_X being missing mass, p, q, p_{K+}, p_{K-} are 4-momenta of proton, γ^* and Kaons.

$-1.0 < \Delta E < 0.6$ GeV,

$0.99 < M_{KK} < 1.04$ GeV,

SIDIS background is subtracted using MC PYTHIA
HERMES PRELIMINARY

- ϕ proton and deuteron, $Q^2 = 1.9$ GeV, $W = 5$ GeV
- ρ^0 proton, EPJ C 62, 4 (2009) 659

A: $\gamma_L^* \rightarrow V_L^0$ and $\gamma_T^* \rightarrow V_T^0$

- $|T_{11}|^2 \propto 1 - r_{00}^{04} \propto r_{1-1}^1 \propto -Im\{r_{1-1}^2\}$

B: Interference $\gamma_L^* \rightarrow V_L^0$ and $\gamma_T^* \rightarrow V_T^0$

- $Re\{T_{00}T_{11}^*\} \propto Re\{r_{10}^5\} \propto -Im\{r_{10}^6\}$
- $Im\{T_{11}T_{00}^*\} \propto Im\{r_{10}^7\} \propto Re\{r_{10}^8\}$

C: Spin Flip: $\gamma_T^* \rightarrow \phi_L$

- $Re\{T_{11}T_{01}^*\} \propto Re\{r_{10}^{04}\} \propto Re\{r_{10}^1\} \propto Im\{r_{10}^2\}$
- $Re\{T_{01}T_{00}^*\} \propto r_{00}^5$

D: Spin Flip: $\gamma_T^* \rightarrow \phi_T$

- $Re\{T_{11}T_{11}^*\} \propto r_{11}^5 \propto r_{1-1}^1 \propto Im\{r_{1-1}^6\}$

E: Spin Flip: $\gamma_T^* \rightarrow \phi_{-T}$

- $Re\{T_{1-1}T_{11}^*\} \propto r_{1-1}^{04} \propto r_{1-1}^1$

Hierarchy of ρ^0 amplitudes:

$|T_{00}| \sim |T_{11}| \gg |T_{01}| \gg |T_{10}| \gg |T_{1-1}|$,

\Rightarrow
SDME of exclusive ϕ production for the integrated data, class A and B

HERMES PRELIMINARY
- ϕ proton and deuteron, $Q^2 = 1.9$ GeV2, $W = 5$ GeV
- p^0 proton, EPJ C 62, 4 (2009) 659

A, $\gamma^*_L \to \phi_L$ and $\gamma^*_T \to \phi_T$

$$|T_{11}|^2 \propto 1 - r_{00}^{04} \propto r_{1-1}^1 \propto -\text{Im}\{r_{1-1}^2\}$$

SDMEs(ϕ) larger by 10% - 20% than SDMEs(ρ^0)

$$|T_{11}/T_{00}(\phi)| > |T_{11}/T_{00}(\rho_0)|$$

B, Interference: γ^*_L, ϕ_T

\[Re\{T_{00}T_{11}^*\} \propto Re\{r_{10}^5\} \propto -Im\{r_{10}^6\}\]

\[Im\{T_{11}T_{00}^*\} \propto Im\{r_{10}^7\} \propto Re\{r_{10}^8\}\]

if SCHC holds:

\[r_{1-1}^1 = -Im\{r_{1-1}^2\}\]

\[Re\{r_{10}^5\} = -Im\{r_{10}^6\}\]

\[Im\{r_{10}^7\} = Re\{r_{10}^8\}\]

Phase difference of T_{11} and T_{00}

\[\tan\delta = (Im\{r_{10}^7\} + Re\{r_{10}^8\})/(Re\{r_{10}^5\} - Im\{r_{10}^6\})\]

\[\delta = 33.0 \pm 7.4 \text{ deg}\]

\[\implies \text{Hierarchy of } \rho^0 \text{ amplitudes:}\]

\[|T_{00}| \sim |T_{11}| \gg |T_{01}| > |T_{10}| \gg |T_{1-1}|\]
SDME of exclusive ϕ production for the integrated data class C,D,E

C, Spin Flip: $\gamma^*_T \rightarrow \phi_L$

$$Re\{T_{11}T^*_{01}\} \propto Re\{r^4_{01}\} \propto Re\{r^1_{10}\} \propto Im\{r^2_{10}\}$$

$$|T_{01}|^2 \propto r^1_{00}$$

$$Im\{T_{01}T^*_{11}\} \propto Im\{r^3_{10}\}$$

$$Im\{T_{01}T^*_{00}\} \propto r^8_{00}$$

ϕ meson SDMEs are consistent with SCHC

Pronounced differences for r^5_{00} and $Re\{r^4_{01}\}$ between ρ and ϕ

$$r^5_{00} \propto Re(T_{11}T^*_{01}) = |T_{01}| |T_{11}| \cos \delta_{01}$$

$$r^8_{00} \propto Im(T_{11}T^*_{01}) = |T_{01}| |T_{11}| \sin \delta_{01}$$

$$|T_{01}|(\phi) < |T_{01}|(\rho^0)$$

$T_{01} \sim 0$ in the absence of longitudinal quark motion in meson.

smaller longitudinal quark motion in the ϕ meson as compared to the ρ^0

$$|T_{00}| \sim |T_{11}| \gg |T_{01}| > |T_{10}| \gg |T_{1-1}|$$
Test of Unnatural-Parity Exchange for ϕ meson

- **Signal of UPE in SDME method**

 $u_1(\phi) = 0.021 \pm 0.071_{\text{stat}} \pm 0.159_{\text{syst}}$

 $u_1 = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^{1} - 2r_{1-1}^{1}$

 $u_1 = \sum \lambda_N \lambda'_N \frac{2\epsilon|U_{10}|^2 + |U_{11} + U_{-11}|^2}{N}$

Summary

The SDMEs were extracted for electroproduction of ϕ vector meson on proton and deuteron at HERMES.

They are presented grouped into five classes according to the hierarchy of helicity amplitudes.

It was found that $|T_{11}/T_{00}|$ for ϕ meson is larger than for ρ^0 meson.

The violation of SCHC by SDMEs is not seen for ϕ meson.

$|T_{01}|$ is very small for ϕ production - smaller longitudinal quark motion in the ϕ meson as compared to ρ^0 meson.

The UPE contribution is not seen for ϕ meson production.