HERA DVCS Working Group Meeting
Hamburg, 28.10.2009

Caroline Riedl
for the HERMES Collaboration
Outline:
DVCS at HERMES

- HERMES and HERA
- Generalized Parton Distributions
- Azimuthal Asymmetry Amplitudes
- The Recoil detector upgrade
HERMES and HERA

Tracking
momentum resolution: ≤ 2%
angular resolution: 0.3...0.6 mrad

Particle IDentification
electron ID: 98-99%
hadron contamination <1%
RICH: 2...15 GeV

Sokolov-Ternov mechanism

\(P_B = 30...65\% \)
2 beam helicities
e\(^+\) and e\(^-\)

\(e^\pm \)
27.6 GeV
HERMES and HERA

27.6 GeV e^\pm

Tracking
momentum resolution: $\leq 2\%$
angular resolution: 0.3...0.6 mrad

| H, H, D |
| H, D |
| He, N, Ne, Kr, Xe |

Particle IDentification
- electron ID: 98-99%
- hadron contamination $<1\%$
- RICH: 2...15 GeV

Sokolov-Ternov mechanism
- $P_B = 30...65\%$
- 2 beam helicities
- e^+ and e^-

Comparison of rise time curves
- Transverse Polarimeter
- Longitudinal Polarimeter
Generalized Parton Distributions

- **PDFs:** longitudinal momentum
 - forward limit $\xi=0$, $t=0$: $H^q(x, 0, 0) = q(x)$

- **Form Factors:** transverse position
 - moments of GPDs: $\int_{-1}^{1} dx H^q(x, \xi, t) = F_1^q(t)$

- **Nucleonic Spin:** total angular momentum
 - Ji relation:

 $$J_q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x [H^q(x, \xi, t) + E^q(x, \xi, t)]$$

Leading twist, quark chirality conserving, spin-1/2

<table>
<thead>
<tr>
<th>f(quark helicity)</th>
<th>$\not\times$</th>
<th>\checkmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>nucleon spin flip</td>
<td>$\not\times$</td>
<td>H</td>
</tr>
<tr>
<td>photon: $J^P=1^-$ (DVCS)</td>
<td>\checkmark</td>
<td>E</td>
</tr>
</tbody>
</table>

leading twist, quark chirality conserving, spin-1/2

Skewing: $\xi \neq 0$

off forward limit

$\int_{-1}^{1} dx H^q(x, \xi, t) = F_1^q(t)$
Generalized Parton Distributions

"Nucleon tomography"

PDFs: longitudinal momentum
forward limit $\xi=0$, $t=0$: $H^q(x, 0, 0) = q(x)$

Form Factors: transverse position
moments of GPDs: $\int_{-1}^{1} dx H^q(x, \xi, t) = F_1^q(t)$

Nucleonic Spin: total angular momentum
Ji relation:

$$J_q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \ [H^q(x, \xi, t) + E^q(x, \xi, t)]$$

<table>
<thead>
<tr>
<th>f(quark helicity)</th>
<th>\times</th>
<th>\checkmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>nucleon spin flip</td>
<td>\times</td>
<td>H</td>
</tr>
<tr>
<td>photon: $J^P=1^{-}$ (DVCS)</td>
<td>\checkmark</td>
<td>E</td>
</tr>
</tbody>
</table>

| J^P=1$^-$ mesons | J^P=0$^-$ mesons |

Caroline Riedl (DESY), HERA DVCS Working Group Meeting, Hamburg 28.10.2009
Generalized Parton Distributions

PDFs: longitudinal momentum
forward limit $\xi=0, t=0$: $H^q(x, 0, 0) = q(x)$

Form Factors: transverse position
moments of GPDs:
$$\int_{-1}^{1} dx H^q(x, \xi, t) = F^q_1(t)$$

"Nucleon tomography"

Nucleonic Spin: total angular momentum

Ji relation:
$$J_q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x [H^q(x, \xi, t) + E^q(x, \xi, t)]$$

<table>
<thead>
<tr>
<th>Leading twist, quark chirality conserving, spin-1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(quark helicity)</td>
</tr>
<tr>
<td>nucleon spin flip</td>
</tr>
<tr>
<td>\checkmark</td>
</tr>
<tr>
<td>\checkmark</td>
</tr>
<tr>
<td>\checkmark</td>
</tr>
</tbody>
</table>

Skewing: $\xi \neq 0$ off forward limit

"Nucleon tomography"
Generalized Parton Distributions

PDFs: longitudinal momentum
forward limit \(\xi=0, t=0: \) \(H^q(x, 0, 0) = q(x) \)

Form Factors: transverse position
moments of GPDs:
\[
\int_{-1}^{1} dx H^q(x, \xi, t) = F_1^q(t)
\]

leading twist, quark chirality conserving, spin-1/2

<table>
<thead>
<tr>
<th>f(quark helicity)</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>nucleon spin flip</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>photon: (J^P=1^-) (DVCS)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

carbide: impact parameter

“Nucleon tomography”

angular momentum

\[
H^q(x, \xi, t) + E^q(x, \xi, t)
\]
Generalized Parton Distributions

PDFs: longitudinal momentum
forward limit $\xi=0$, $t=0$: $H^q(x, 0, 0) = q(x)$

Form Factors: transverse position
moments of GPDs: $\int_{-1}^{1} dx H^q(x, \xi, t) = F_1^q(t)$

"Nucleon tomography"

Nucleonic Spin: total angular momentum

Ji relation:

$$J_q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \ [H^q(x, \xi, t) + E^q(x, \xi, t)]$$

leading twist, quark chirality conserving, spin-1/2

<table>
<thead>
<tr>
<th>f(quark helicity)</th>
<th>\times</th>
<th>\checkmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>nucleon spin flip</td>
<td>photon: $J^p=1^-$ (DVCS)</td>
<td>\times</td>
</tr>
</tbody>
</table>

H, E, \tilde{H}, \tilde{E}

Skewing: $\xi \neq 0$ off forward limit

$J^p=1^-$ mesons $J^p=0^-$ mesons
Generalized Parton Distributions

PDFs: longitudinal momentum
forward limit $\xi = 0$, $t = 0$: $H^q(x, 0, 0) = q(x)$

Form Factors: transverse position
moments of GPDs:
$$\int_{-1}^{1} dx H^q(x, \xi, t) = F_1^q(t)$$

"Nucleon tomography"

Nucleonic Spin: total angular momentum
Ji relation:
$$J_q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x [H^q(x, \xi, t) + E^q(x, \xi, t)]$$
Deeply Virtual Compton Scattering

\[\sigma_{\gamma^*\gamma N} \sim |\tau_{\text{DVCS}}|^2 + |\tau_{\text{BH}}|^2 + \tau_{\text{DVCS}}\tau_{\text{BH}}^* + \tau_{\text{DVCS}}^*\tau_{\text{BH}} \]

Contribution at colliders.

Fixed target:

\[|\tau_{\text{DVCS}}|^2 \ll |\tau_{\text{BH}}|^2 \]

Exactly calculable in QED given the nucleon elastic form factors \(F_1 \) and \(F_2 \)

Holographic principle:

• BH reference amplitude magnifies DVCS
• Measure magnitude \(A \) and phase \(\phi \) of DVCS amplitude \(\tau_{\text{DVCS}} = Ae^{i\phi} \)

DVCS-BH interference term
Deeply Virtual Compton Scattering

\[\sigma_{\gamma^* \gamma N} \sim |T_{\text{DVCS}}|^2 + |T_{\text{BH}}|^2 + T_{\text{DVCS}} T_{\text{BH}}^* + T_{\text{DVCS}}^* T_{\text{BH}} \]

Contribution at colliders.

Fixed target:

\[|T_{\text{DVCS}}|^2 \ll |T_{\text{BH}}|^2 \]

Exactly calculable in QED given the nucleon elastic form factors \(F_1 \) and \(F_2 \)

Holographic principle:

- BH reference amplitude magnifies DVCS
- Measure magnitude \(A \) and phase \(\phi \) of DVCS amplitude \(T_{\text{DVCS}} = A e^{i\phi} \)

Belitsky, Müller, hep-ph/0206306

Caroline Riedl (DESY), HERA DVCS Working Group Meeting, Hamburg 28.10.2009
Azimuthal Dependences in $\gamma^* N \rightarrow \gamma N$

- Unpolarized target
- Lepton beam with charge C_B and polarization P_B

Fourier expansion in azimuthal angle ϕ

\[
|\mathcal{T}_{BH}|^2 = \frac{K_{BH}}{P_1(\phi)P_2(\phi)} \sum_{n=0}^{2} c_n^{BH} \cos(n\phi)
\]

\[
|\mathcal{T}_{DVCS}|^2 = K_{DVCS} \left[\sum_{n=0}^{2} c_n^{DVCS} \cos(n\phi) + P_B \sum_{n=1}^{1} s_n^{DVCS} \sin(n\phi) \right]
\]

\[
\mathcal{I} = \frac{C_B K_{I}}{P_1(\phi)P_2(\phi)} \left[\sum_{n=0}^{3} c_n^{I} \cos(n\phi) + P_B \sum_{n=1}^{2} s_n^{I} \sin(n\phi) \right]
\]

Wanted: Fourier coefficients s_n and c_n of BH, DVCS, and I terms
Measured Azimuthal Asymmetries in DVCS

Born cross-section:
\[\sigma(\phi; P_B, C_B) = \sigma_{UU}(\phi) \cdot [1 + P_B A_{LU}^{DVCS}(\phi) + C_B P_B A_{LU}^T(\phi) + C_B A_C(\phi)] \]

Beam helicity asymmetries

Old approach at HERMES and CLAS: single charge BSA

\[A_{LU}(\phi) \equiv \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} \]

no separate access to \(s_1^q \) and \(s_1^{DVCS} \)

Beam charge asymmetry

BSA: projects out imaginary part of \(\tau_{DVCS} \)

BCA: projects out real part of \(\tau_{DVCS} \)

\[A_C(\phi) \equiv \frac{d\sigma^+ - d\sigma^-}{d\sigma^+ + d\sigma^-} \]
Measured Azimuthal Asymmetries in DVCS

Beam helicity asymmetries

Old approach at HERMES and CLAS: single charge BSA

\[A_{LU}(\phi) \equiv \frac{d\sigma^\rightarrow - d\sigma^\leftarrow}{d\sigma^\rightarrow + d\sigma^\leftarrow} \]

no separate access to \(s_1^q \) and \(s_1^{DVCS} \)

New approach at HERMES: \(s_1^q \) and \(s_1^{DVCS} \) can be disentangled

Charge difference BSA:

\[A_{LU}^I(\phi) \equiv \frac{(d\sigma^{+\rightarrow} - d\sigma^{+\leftarrow}) - (d\sigma^{-\rightarrow} - d\sigma^{-\leftarrow})}{(d\sigma^{+\rightarrow} + d\sigma^{+\leftarrow}) + (d\sigma^{-\rightarrow} + d\sigma^{-\leftarrow})} \]

Beam charge asymmetry

BCA:
projects out real part of \(\tau_{DVCS} \)

Charge average BSA:

\[A_{LU}^C(\phi) \equiv \frac{(d\sigma^{+\rightarrow} - d\sigma^{+\leftarrow}) + (d\sigma^{-\rightarrow} - d\sigma^{-\leftarrow})}{(d\sigma^{+\rightarrow} + d\sigma^{+\leftarrow}) + (d\sigma^{-\rightarrow} + d\sigma^{-\leftarrow})} \]
From Azimuthal Asymmetries to GPDs

Express asymmetries in terms of Fourier coefficients c and s
\[\equiv\text{asymmetry amplitudes}\]

Compton Form Factors (CFFs)
\[\mathcal{F}(\xi, t) = \sum_q \int_{-1}^{1} dx \, C_q^\mp(\xi, x) F^q(x, \xi, t)\]

Define linear combination of CFFs:
\[C_{\text{unp}}^\tau = F_1 \mathcal{H} + \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E}\]

$F_1(t), F_2(t)$: Dirac, Pauli nucleonic form factors

At leading twist level (twist-2):
\[c^\tau_1 \propto \frac{\sqrt{-t}}{Q} \Re \left[C_{\text{unp}}^\tau \right] \propto - \frac{Q}{\sqrt{-t}} c^\tau_0\]
\[s^\tau_1 \propto \frac{\sqrt{-t}}{Q} \Im \left[C_{\text{unp}}^\tau \right] \]

BCA

BSA

constant term
DVCS at HERMES 1996-2005 (w/o Recoil)

Detected particles: electron and photon

Missing mass technique for \(ep \rightarrow eX\gamma \)

\[M_X^2 = (p+q-p_\gamma)^2 \]

- Hydrogen target: 25k events (400 pb\(^{-1}\))
- Unpolarized deuterium: 15k events (300 pb\(^{-1}\))
DVCS at HERMES 1996-2005 (w/o Recoil)

Detected particles: electron and photon

Missing mass technique for $ep \rightarrow eX\gamma$

$M_X^2 = (p+q-p_\gamma)^2$

Detected particles:

- Electron and photon

**Diagram: **

- Field clamps
- Drift chambers
- Target cell
- Steel plate
- Magnetic field
- Positron
- Electron
- Hydrogen target: 25k events (400 pb$^{-1}$)
- Resonant excitation: $X = \Delta^+$
- Unpolarized deuterium: 15k events (300 pb$^{-1}$)
- $X = \pi^0 + ...$
- $p\pi^0$
- $n\pi^+$

**Graph: **

- 1000N/N$_{DIS}$
- $M_X^2 (GeV^2)$
- e^+ data
- e^- data
- MC sum
- Elastic BH
- Associated BH
- Semi-inclusive
DVCS at HERMES 1996-2005 (w/o Recoil)

Detected particles: electron and photon

Missing mass technique for $ep \rightarrow eX\gamma$

$$M_X^2 = (p + q - p_\gamma)^2$$

hydrogen target: 25k events (400 pb$^{-1}$)

unpolarized deuterium: 15k events (300 pb$^{-1}$)

detected particles: electron and photon

resonant excitation: $X = \Delta^+$

$X = \pi^0 + ...$

$X = p$

e^+ data

e^- data

MC sum

elastic BH

associated BH

semi-inclusive

$1000N/N_{Bjj}$

M_X^2 (GeV2)
DVCS at HERMES 1996-2005 (w/o Recoil)

Detected particles: electron and photon

Missing mass technique for ep→eXγ

\[M_X^2 = (p+q-p_\gamma)^2 \]

Detected particles:
- electron and photon

Missing mass technique for\[ep \rightarrow eX\gamma \]

\[M_X^2 = (p+q-p_\gamma)^2 \]

- \(e^+ \) data
- \(e^- \) data
- MC sum
- elastic BH
- associated BH
- semi-inclusive

\[X = p \]

Resonant excitation: \(X = \Delta^+ \)

\[X = \pi^0 + \ldots \]

Hydrogen target:
- 25k events
 - (400 pb\(^{-1}\))

Unpolarized deuterium:
- 15k events
 - (300 pb\(^{-1}\))
DVCS Beam Helicity Asymmetries

HERMES

\(\propto \Im [F_1 \mathcal{H}] \)

\(ep \rightarrow ep\gamma \)

Higher twist (twist-3)

Fraction of resonant excitation

all data 1996-2005, arXiv:0909.3587, accepted by JHEP
DVCS Beam Charge Asymmetry

\[\propto -A_C \cos \phi \]

Constant term:

\[\propto \Re \left[F_1 \mathcal{H} \right] \]

\[\leftrightarrow \text{Higher twist (twist}-3\text{)} \]

\[\leftrightarrow \text{Gluon leading twist} \]

HERMES

\[ep \rightarrow ep \gamma \]
DVCS Beam Charge Asymmetry

\[\propto - A_C \cos \phi \]

constant term:

\[\propto \Re \left[F_1 \mathcal{H} \right] \]

HERMES

ep → epγ

\[\propto \Re \left[F_1 \mathcal{H} \right] \]

Also available:
2-dim \((x_B,t)\) binning
(BSAs and BCA)

Higher twist (twist-3)

Gluon leading twist

\[\propto - A_C \cos \phi \]

\[\propto \Re \left[F_1 \mathcal{H} \right] \]
DVCS on Nuclear Targets

- How does the nuclear environment modify parton-parton correlations?
- How do nucleon properties change in the nuclear medium?
- DVCS in coherent region: new insights into ‘generalized EMC effect’?

- Nuclear GPDs ≠ GPDs of free nucleon
- Enhancement of effect when leaving forward limit?
- Strong increase of real part of τ_{DVCS} with atomic mass number A?
DVCS on Nuclear Targets

- How does the nuclear environment modify parton-parton correlations?
- How do nucleon properties change in the nuclear medium?
- DVCS in coherent region: new insights into ‘generalized EMC effect’?

- Nuclear GPDs ≠ GPDs of free nucleon
- Enhancement of effect when leaving forward limit?
- Strong increase of real part of τ_{DVCS} with atomic mass number A?

<table>
<thead>
<tr>
<th>Target</th>
<th>spin</th>
<th>L (pb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1/2</td>
<td>227</td>
</tr>
<tr>
<td>He</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>Ne</td>
<td>0</td>
<td>86</td>
</tr>
<tr>
<td>Kr</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>Xe</td>
<td>0, 1/2, 3/2</td>
<td>47</td>
</tr>
</tbody>
</table>
DVCS on Nuclear Targets

How does the nuclear environment modify parton-parton correlations?

How do nucleon properties change in the nuclear medium?

DVCS in coherent region: new insights into ‘generalized EMC effect’?

Nuclear GPDs ≠ GPDs of free nucleon

Enhancement of effect when leaving forward limit?

Strong increase of real part of τ_{DVCS} with atomic mass number A?

HERMES measurements on nuclear targets

<table>
<thead>
<tr>
<th>Target</th>
<th>spin</th>
<th>L (pb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1/2</td>
<td>227</td>
</tr>
<tr>
<td>He</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>Ne</td>
<td>0</td>
<td>86</td>
</tr>
<tr>
<td>Kr</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>Xe</td>
<td>0, 1/2, 3/2</td>
<td>47</td>
</tr>
</tbody>
</table>

+ deuterium, spin-1, 300 pb$^{-1}$
DVCS Beam Charge Asymmetry on hydrogen and deuterium

HERMES PRELIMINARY

Acceptance & smear → sys error

overall -t (GeV²) x_B Q² (GeV²)
DVCS Beam Charge Asymmetry on hydrogen and deuterium

HERMES PRELIMINARY
Accep & smear → sys error

$e^\pm d \rightarrow e^\pm \gamma X$

$e^\pm p \rightarrow e^\pm \gamma X$

$A_C \cos(0 \phi)$

$A_C \cos(2 \phi)$

$A_C \cos(3 \phi)$

overall

$-t$ (GeV2)

x_B

Q^2 (GeV2)

low t: coherent

Proton

elicastic

inelastic

Nucleus

coherent

quasi-elastic

incoherent

Caroline Riedl (DESY), HERA DVCS Working Group Meeting, Hamburg 28.10.2009
DVCS Beam Charge Asymmetry on hydrogen and deuterium
Select for each target two samples (t-cutoffs):

- **coherent enriched**

 \(\approx 65\% \) coherent fraction

- **incoherent enriched**

 \(\approx 60\% \) incoherent fraction
Select for each target two samples (t-cutoffs):
- coherent enriched
 (∼65% coherent fraction)
- incoherent enriched
 (∼60% incoherent fraction)
Select for each target two samples (t-cutoffs):

- coherent enriched
 \(\approx 65\% \) coherent fraction

- incoherent enriched
 \(\approx 60\% \) incoherent fraction

\(\Rightarrow \) no enhancement of \(T_{DVCS} \)
DVCS Transverse Target Spin Asymmetry $A_{UT}(\phi, \phi_s)$

A_{UT}: the only DVCS asymmetry on the proton for which **GPD E is not suppressed**

(JLab Hall-A: BSA on neutron)

HERMES: transversely polarized hydrogen, 170 pb$^{-1}$, 2 beam charges

- Separation of DVCS and interference terms possible:

$$A_{UT}^I(\phi, \phi_s) \propto [d\sigma^+(\phi, \phi_s) - d\sigma^-(\phi, \phi_s)] - [d\sigma^+(\phi, \phi_s + \pi) - d\sigma^-(\phi, \phi_s + \pi)]$$

$$A_{UT}^I(\phi, \phi_s) \propto \text{Im} \left(F_2 \mathcal{H} - F_1 \mathcal{E} \right) \sin(\phi - \phi_s) \cos \phi$$

$$+ \text{Im} \left(F_2 \tilde{\mathcal{H}} - (F_1 + \xi F_2) \tilde{\mathcal{E}} \right) \cos(\phi - \phi_s) \sin \phi$$
DVCS Transverse Target Spin Asymmetry \(A_{UT}(\phi, \phi_S) \)

- \(A_{UT} \): the only DVCS asymmetry on the proton for which **GPD E is not suppressed**
 (JLab Hall-A: BSA on neutron)

- **HERMES**: transversely polarized hydrogen, 170 pb\(^{-1}\), 2 beam charges

- Separation of DVCS and interference terms possible:

\[
A_{UT}^I(\phi, \phi_s) \propto [d\sigma^+(\phi, \phi_s) - d\sigma^-(\phi, \phi_s)]^+ + [d\sigma^+(\phi, \phi_s + \pi) - d\sigma^-(\phi, \phi_s + \pi)]
\]

\[
A_{UT}^I(\phi, \phi_s) \propto \text{Im} (F_2 \mathcal{H} - F_1 \mathcal{E}) \sin(\phi - \phi_s) \cos \phi \\
+ \text{Im} \left(F_2 \tilde{\mathcal{H}} - (F_1 + \xi F_2) \tilde{\mathcal{E}} \right) \cos(\phi - \phi_s) \sin \phi
\]
DVCS A_{UT} Amplitudes

Model: VGG with variation of J_u, while $J_d=0$
DVCS A_{UT} Amplitudes

With a GPD model describing the data, one could in principle extract a constraint on $J_u + k \cdot J_d$

Model: VGG with variation of J_u, while $J_d=0$
DVCS azimuthal amplitudes

(A) Beam charge asymmetry: GPD H

(B) Beam helicity asymmetry: GPD H

(C) Transverse target spin asymmetry: GPD E from proton target

(D) Longitudinal target spin asymmetry: GPD \tilde{H}
HERMES 2006-2007: Recoil Detector

- SC Solenoid (1 Tesla)
- Photon Detector
- Scintillating Fiber Tracker
- Silicon Strip Detector
- Target Cell with unpolarized 1H or 2H

Purpose:
- To tag exclusive events
- Identify recoiling target proton
- Identify particles from background processes

Azimuthal coverage: 76%

1H (2H): factor of 1.6 (0.5) more than 1996-2005
HERMES 2006-2007: Recoil Detector

Purpose:

★ To tag exclusive events
➢ Identify recoiling target proton
➢ Identify particles from background processes

Beam

SC Solenoid (1 Tesla)

Photon Detector

Scintillating Fiber Tracker

Silicon Strip Detector

Target Cell with unpolarized 1H or 2H

1H (2H): factor of 1.6 (0.5)
more than 1996-2005

Azimuthal coverage: 76%
DVCS and the Recoil

- **Missing \(\phi \):** \(\Delta \phi = \phi_{\text{meas}} - \phi_{\text{calc}} \)
- **Missing \(p \):** \(\Delta p = p_{\text{meas}} - p_{\text{calc}} \)

Missing Mass (\(\approx M^2_P \)):

\[
M^2_X = (p + p_{\gamma^*} - p_\gamma)^2
\]

Hermes 2007 data

- Traditional DVCS analysis
 - \(E_\gamma > 5 \text{ GeV} \)
 - \(|\Delta p| < 1 \text{ GeV/c} \)
 - \(|\Delta p| > 1 \text{ GeV/c} \)
Separation of Resonant and Elastic States with the Recoil

DVCS / Bethe Heitler

- **Elastic:**
 - $ep \rightarrow ep\gamma$

- **Resonant ('associated'):**
 - $ep \rightarrow e\Delta^+\gamma$
 - $\Delta^+ \rightarrow \{ n\pi^+, 1/3 \}$
 - $p\pi^0, 2/3$
 - 12% of signal

- Presence of $\pi^0 \Rightarrow$ proton fails coplanarity cut
 - Select elastic:
 - $|\Delta\phi| < 0.1 \text{ rad}$
 - $|p_T^{\text{calc}}|/|p_T^{\text{meas}}| = 0.5 \div 1.5$
 - Select resonant:
 - $|\Delta\phi| > 0.35 \text{ rad}$

Hermes 2007 data

- Recoil proton in acceptance with Coplanarity cut turned around
- Counts

$M_x^2 [(GeV/c)^2]$
Summary and Outlook: DVCS at HERMES

HERMES 1996-2005

- Target spin asymmetry on transversely polarized H published in 2008
- BSA and BCA on H, D and nuclear targets to be published in 2009
- Target spin asymmetries on longitudinally polarized H and D early 2010

HERMES 2006-2007

- Recoil detector allows separation of resonant and elastic contributions
- Resonant asymmetry unknown so far
- Allows refinement of pre-Recoil data

HERMES provides complete set of DVCS azimuthal asymmetries as input to global GPD fits
- Limited only by statistics and acceptance