Determination of the Structure Function F_2 at hermes

Dominik D. Gabbert
DESY-Zeuthen / Universität Hamburg

29. Oktober 2008
Probing the Structure of Nucleons

- **Deep-inelastic scattering** (DIS) plays major role in understanding of nucleon structure
- Lepton-nucleon scattering **cleanest way** to probe substructure of nucleon
- Exchange of virtual boson, **breakup** and hadronization in DIS regime

For given s, two kinematic variables completely describe the scattering process in the inclusive analysis, e.g.:

\[Q^2 = -q^2 = (k-k')^2 = 4E'E\sin^2 \theta \frac{\theta}{2} \quad \text{photon virtuality} \]
\[\nu = \frac{P\cdot q}{M} = E - E' \quad \text{photon energy (lab)} \]

Invariant mass of hadronic final state:
\[W^2 = (P + q)^2 = M^2 + 2M\nu - Q^2 \]

Resolution of deep-inelastic scattering:
\[\lambda = \frac{1}{|q|} = \frac{1}{\sqrt{\nu^2 + Q^2}} \approx \frac{2Mx}{Q^2} \]
Structure Functions of the Nucleon

Deep-inelastic scattering in the \textit{one-photon} exchange approximation can be written as:

\[
\frac{d^2 \sigma}{d \Omega \, dE'} = \frac{\alpha_{em}^2}{2MQ^2} \frac{E'}{E} \, L_{\mu \gamma} W^{\mu \gamma}
\]

Leptonic and hadronic tensors have symmetric (S) and anti-symmetric (A) contributions:

\[
\frac{d^2 \sigma}{d \Omega \, dE'} = \frac{\alpha_{em}^2}{2MQ^2} \frac{E'}{E} \left[L_{\mu \gamma}^{(S)} W^{\mu \gamma(S)} + L_{\mu \gamma}^{(S)} W^{\mu \gamma(S)} + L_{\mu \gamma}^{(A)} W^{\mu \gamma(A)} + L_{\mu \gamma}^{(A)} W^{\mu \gamma(A)} \right]
\]

Leptonic tensor known from QED.
Hadronic tensor describes a-priori unknown hadronic structure, parameterized by:

\[
\begin{align*}
W_{\mu \gamma}^{(A)} & \quad \text{Observable in polarized scattering} & G_1, G_2 \quad \text{(or } g_1, g_2) \\
W_{\mu \gamma}^{(S)} & \quad \text{Observable in unpolarized scattering} & W_1, W_2 \quad \text{(or } F_1, F_2)
\end{align*}
\]
Structure Functions of the Nucleon

Deep-inelastic scattering in the one-photon exchange approximation can be written as:

\[
\frac{d^2 \sigma}{d \Omega \, dE'} = \frac{\alpha_{em}^2}{2MQ^2} \frac{E'}{E} \, L_{\mu' \nu} \, W^{\mu' \nu}
\]

Leptonic and hadronic tensors have symmetric (S) and anti-symmetric (A) contributions:

\[
\frac{d^2 \sigma}{d \Omega \, dE'} = \frac{\alpha_{em}^2}{2MQ^2} \frac{E'}{E} \left[L^{(S)}_{\mu' \nu} \, W^{\mu' \nu(S)} + L^{(A)}_{\mu' \nu} \, W^{\mu' \nu(A)} + L^{(S)}_{\mu' \nu} \, W^{\mu' \nu(S)} + L^{(A)}_{\mu' \nu} \, W^{\mu' \nu(A)} \right]
\]

Leptonic tensor known from QED. Hadron tensor describes a-priori unknown hadronic structure, parameterized by:

- \(W^{(A)}_{\mu' \nu} \) Observable in polarized scattering
 \(G_1, G_2 \) (or \(g_1, g_2 \))
- \(W^{(S)}_{\mu' \nu} \) Observable in unpolarized scattering
 \(W_1, W_2 \) (or \(F_1, F_2 \))

Consider unpolarized scattering in the following. Parameterize hadronic structure using \(F_1 \) and \(F_2 \) for which Bjørken predicted scaling:

\[
F_1(x, Q^2) = MW_1(\nu, Q^2) \rightarrow F_1(x) \quad F_2(x, Q^2) = \nu W_2(\nu, Q^2) \rightarrow F_2(x)
\]

\[
\frac{d^2 \sigma}{dx \, dQ^2} = \frac{4 \pi \alpha_{em}^2}{Q^4} \left[y^2 F_1(x, Q^2) + \left(1 - y - \frac{M}{2E} \right) \cdot F_2(x, Q^2) \right]
\]
Structure Functions F_1, F_2

In naïve Quark-Parton-Model:

$$
F_1 = \frac{1}{2} \sum_f e_f^2 [q(x) + \bar{q}(x)]
\quad \text{Callan-Gross relation}
$$

$$
F_2 = x \sum_f e_f^2 [q(x) + \bar{q}(x)]
\quad F_2 = 2x F_1
$$

Longitudinal (σ_L) and transverse (σ_T) virtual-photon contributions:

$$
F_1 = \frac{MK}{4\pi \alpha_{em}} \sigma_T
$$

$$
F_2 = \frac{\nu K (\sigma_L + \sigma_T)}{4\pi \alpha_{em} (1 + Q^2 / 4M^2 x^2)}
$$

Virtual-photon flux

$$
\Gamma = \frac{\alpha_{em} K E'}{2\pi^2 Q^2 E} \frac{1}{1 - \epsilon}
$$

Define ratio R and re-parameterize cross section

$$
R = \frac{\sigma_L}{\sigma_T}
$$

$$
\frac{d^2 \sigma}{dx \, dQ^2} = \frac{4\pi \alpha_{em}^2}{Q^4} \frac{F_2}{x} \times \left[1 - y - \frac{Q^2}{4E^2} + \frac{y^2 + Q^2 / E^2}{2(1 + R(x, Q^2))} \right]
$$

Virtual-photon polarization parameter

$$
\epsilon = \frac{4(1 - y) - Q^2 / E^2}{4(1 - y) + 2 \, y^2 + Q^2 / E^2}
$$
Kinematic Plane in x-Q^2

Collider experiments

Fixed target experiments

H1
ZEUS
Fixed Target Experiments:
SLAC, BCDMS
NMC, E665, HERMES

Hera 1
Hera 2 (HERA ~300 GeV)

Why measuring *inclusive DIS cross sections* at Hermes?

Hermes (1996-2005)

- 30 M proton + 28 M deuteron
- ~450 pb⁻¹
- ~460 pb⁻¹

e.g.: compared to NMC

- 3 M proton + 6 M deuteron

World largest data set on deuteron

\[F_p^2, \ F_d^2 \]

World data fits

\[\sigma_p^d, \ \sigma_d^p, \ \sigma_d^p / \sigma_p \]

Gottfried Sum

\[\int \frac{dx}{x} (F_p^2 - F_n^2) \]

\[d_v / u_v \]
Binning in x and Q^2

- Traditional DIS regime $Q^2 > 1 \text{ GeV}^2$ can be easily separated

kinematic region
- $0.006 < x < 0.9$
- $0.1 < y < 0.85$
- $0.2 \text{ GeV}^2 < Q^2 < 20 \text{ GeV}^2$
- $W^2 > 5 \text{ GeV}^2$
- $0.04 \text{ rad} < \Theta < 0.22 \text{ rad}$

binning
- 19 x bins
- up to 6 Q^2 bins
- Total: 81 bins
Extraction of cross sections

DIS Yields

Charge symmetric background
PID flux correction
PID efficiencies
Trigger efficiencies
Luminosity (accidental coincidence)

Unfolding

Geometric Acceptance
Detector Smearing
Radiative Corrections
Tracking related effects

DIS Born cross-section

Misalignment (uncertainty)
Luminosity

- Elastic reference process
- Interaction of beam with shell electrons
 - Electron Beam: Møller scattering \(e^- e^- \rightarrow e^- e^- \)
 - Positron Beam: Bhabha scattering \(e^+ e^- \rightarrow e^+ e^- \), annihilation
 - Coincidence rate \(R_{RL} \) in \(\Delta t = 80\text{ns} \) time resolution window
- Luminosity “constants” \(C_{\text{Lumi}} \) convert coincidence rate into luminosity \((\text{pb}^{-1}) \)
- Uncertainties of \(\sim 3\% - 8\% \). Acceptance of L. detector depends on e.g.
 - beam conditions
 - magnetic fields

\[
L = \int_{b}^{\infty} \mathcal{L} \, dt = (R_{LR} \cdot \Delta t \cdot R_{L} \cdot R_{R}) \cdot C_{\text{Lumi}} \cdot \frac{A}{Z} \cdot l \cdot \Delta b
\]

- Coincidence rate
- Luminosity constant
- A: nucleons
- Z: shell electrons

\[
\sigma_{\text{DIS}} = \frac{N_{\text{DIS}}}{\int \mathcal{L} \, dt}
\]

DIS yield
Particle identification

TRD → Cherenkov (RICH) → Preshower → Calorimeter

Conditional probabilities for particle hypotheses

\[\text{PID} = \text{PID}_{\text{det}} - \log_{10} \Phi \]

\[\Phi = \frac{\phi_h}{\phi_l} = \frac{P(H_h|p, \theta)}{P(H_l|p, \theta)} \]

Relative contributions hadrons and leptons

\[\text{PID} < 0 \quad \text{Hadrons} \]

\[\text{PID} > 0 \quad \text{Leptons} \]
PID efficiency and contamination

Lepton sample identified by: $PID > PID_l$ with $PID_l = 0$
- high efficiencies and small contaminations at same time

Contamination of lepton sample

$C = \text{Fractional contribution of hadrons in the lepton sample}$

$$\frac{\int_{PID_l} dPID \ N_h}{\int_{PID_l} dPID \ (N_l + N_h)}$$

Efficiency lepton identification

$\varepsilon = \text{Fraction of leptons selected with PID}>0$

$$\frac{\int_{PID_l} dPID \ N_l}{\int dPID \ N_l}$$

Correction:

$$N_{\text{cor}} = N_{\text{unc}} \cdot \frac{1 - C(PID_l)}{\varepsilon(PID_l)}$$

Due to correlations between PID detectors, assign uncertainty of full size of correction.
Towards higher ν (smaller momenta)

- Decreasing **efficiency** ($\geq 98\%$)
- Increasing **contamination** ($\leq 1\%$)

C as a function of ν

$N_{\text{cor}} = N_{\text{unc}} \cdot \frac{1 - C(PID_i)}{\varepsilon(PID_i)}$

Correction small ($\sim 1\%$)
Trigger efficiencies

- Trigger = combination of fast signals
- Select events of specific interest

DIS trigger (tr21)

\[\varepsilon(\text{tr21}) = \varepsilon(H0) \cdot \varepsilon(H1) \cdot \varepsilon(H2) \cdot \varepsilon(\text{CA}) \]

- Trigger efficiencies for each year. Depend on time, momentum, angle.

Example 2000:

- \(\varepsilon(H0) \)
- \(\varepsilon(\text{tr21}) \)

\[w = \frac{1}{\varepsilon} \]

- \(\varepsilon(H1), \varepsilon(H2), \varepsilon(\text{CA}) > 99\% \)
- \(\varepsilon(H0) \sim 97\% \) low!
- Different in top, bot.

- H0 inefficiencies dominate trigger 21 inefficiency → contrib. to top-bot-asym.
QED radiative effects

Feynman diagrams of processes contributing to radiative corrections:

- Initial state radiation
- Final state radiation
- Vacuum polarization
- Vertex correction
Migration matrix

Binning in x

Binning in $x-Q^2$

Diagonal elements on migration matrix, measured bin = Born level bin

Migration into acceptance from outside n(i,0), i>0
Unfolding of kinematic bin migration

- Measured Data
- Unfolding
 - Matrix inversion
 - Smearing matrix S'
 - Background term $n(i,0)$
- Data on 4π-Born level
- 4π-Born MC
 - Simulation of true cross section
 - No radiative effects
 - No tracking
- Full detector MC
 - Detector material (GEANT4)
 - Radiative effects
 - Tracking
- Background term includes radiative inelastic and elastic events
Bethe-Heitler Cross section

Bethe-Heitler: Radiation of real photons associated with elastic interaction of charged particle with the electromagnetic nuclear field

Due to photon radiation, the apparent kinematic variables of Bethe-Heitler events can be indistinguishable from DIS events. → Background to DIS.

Three cases

- **QED Compton**

 Photon radiation at finite angles

 \[(1 - y) \sin \theta_{e'} = y \sin \theta_\gamma\]

 → high probability to hit detector frames

- **Initial state radiation (ISR)**

 Photon radiation along incoming lepton (lost in the beam pipe)

- **Final state radiation (FSR)**

 Photon radiation along outgoing lepton
Bethe-Heitler efficiencies

- Bethe-Heitler efficiencies **extracted from MC** for proton and deuteron

Proton

Deuteron

- Bethe-Heitler efficiencies are relevant for unfolding
Misalignment

- **Ideal situation**: Perfect alignment of beam and spectrometer
- **In practice**:
 - Top and bottom parts of **spectrometer** displaced
 - **Beam position** differs from nominal position

- Beam misalignment measured by beam monitors
- Analysis of tracks in the top and bottom halves provides information about misalignment of spectrometer

Misalignment of Beam (1998, 2000) and Spectrometer

<table>
<thead>
<tr>
<th></th>
<th>e⁻</th>
<th>e⁺</th>
<th>top</th>
<th>bot</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-slope (mrad)</td>
<td>-0.014</td>
<td>-0.035</td>
<td>0.44</td>
<td>0.24</td>
</tr>
<tr>
<td>Y-slope (mrad)</td>
<td>-1.200</td>
<td>-0.420</td>
<td>-1.2</td>
<td>0.02</td>
</tr>
<tr>
<td>X-offset (cm)</td>
<td>0.015</td>
<td>0.017</td>
<td>-0.09</td>
<td>-0.11</td>
</tr>
<tr>
<td>Y-offset (cm)</td>
<td>0.090</td>
<td>0.160</td>
<td>-0.01</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Misalignment

Simulation of misalignment in MC:

- “Misalignment ratio”: Effect of misalignment is in the order of 7%.
- No correction for misalignment but assignment of uncertainty:
 \[\frac{\sigma_{\text{misaligned}}}{\sigma_{\text{aligned}}} - 1 \]
- Unfolding of the misalignment ratio to Born level
Systematic uncertainties on σ^p, σ^d

- Which systematic uncertainties are assigned.

\[\delta_{\text{PID}} : \text{PID misidentification} \]
\[\text{typically } \sim 1\% \]

\[\delta_{\text{rad.}} : \text{Unc. of BH efficiencies due to misalignment} \]
\[\lesssim 1\% \]

\[\delta_{\text{mis}} : \text{Misalignment effect on DIS events} \]
\[\sim 7\% \]

\[\delta_{\text{nor}} : \text{Overall normalization unc.: Luminosity} \]
\[\delta_{\text{nor}}^p = 6.4 \% \quad \delta_{\text{nor}}^d = 6.6 \% \]
Fit to world data of proton DIS cross-sections

Fit with the following features

- Based on the *ALLM functional form* for the γp cross section
 - Regge-motivated, phenomenological approach
 - allows very good description of measured regions
 - constructed so that photoproduction data at $Q^2=0$ can be included

- *Normalization uncertainties* are considered by an accurate method involving a penalty term in χ^2.

- *Fit uncertainties* are determined.
 Covariance matrix provided for the first time.

- *Self-consistent* with respect to the use of $R = \frac{\sigma_L}{\sigma_T}$

- This fit includes *newer data* and covers *2821 data points*. This is more than twice as much as used in ALLM97 (1356 data points).

- Fit results available in *FORTRAN* routine:
 http://www-hermes.desy.de/users/dgabbert/SIGMATOT_PARAM.tgz
Fit to world data of proton DIS cross-sections

• The DIS cross-section in the 1-photon exchange approximation:

\[
\frac{d^2\sigma}{dx \, dQ^2} = \frac{4\pi \alpha^2_{em}}{Q^4} \frac{F_2}{x} \times \left[1 - y - \frac{Q^2}{4E^2} + \frac{y^2 + Q^2/E^2}{2(1 + R(x, Q^2))} \right]
\]

for all data sets

• \(F_2\) can be related to the full cross-section \(\sigma = \sigma_L + \sigma_T\)

\[
\sigma_{L+T}(y \, p) = \frac{4\pi \alpha}{Q^2(1-x)} \frac{Q^2 + 4M^2 \, x^2}{Q^2} \frac{F_2}{Q^2} (W^2, Q^2)
\]

• Consistent treatment of \(R\)
Fit to world data of proton DIS cross-sections

- The DIS cross-section in the 1-photon exchange approximation:

\[
\frac{d^{2}\sigma}{dx\,dQ^{2}} = \frac{4\pi\alpha_{em}^{2}}{Q^{4}} \frac{F_{2}}{x} \times \left[1 - y - \frac{Q^{2}}{4E^{2}} + \frac{y^{2} + Q^{2}/E^{2}}{2(1+R(x, Q^{2}))} \right]
\]

for all data sets

- \(F_{2}\) can be related to the full cross-section \(\sigma = \sigma_{L} + \sigma_{T}\)

\[
\sigma_{L+T}(y, p) = \frac{4\pi\alpha}{Q^{2}(1-x)} \frac{Q^{2} + 4M^{2}x^{2}}{Q^{2}} \frac{F_{2}}{W^{2}, Q^{2}}
\]

- Consistent treatment of \(R\)
$X^2 - \text{Minimization}$

$X^2 - \text{Minimization}$

$$X^2 = \sum_{i}^{n_{\text{max}}} \left(\frac{(\sigma_{i}^{\exp} - \sigma_{i}^{\text{th}})^2}{\delta_{i}^{2 \text{ sta}} + \delta_{i}^{2 \text{ sys}}} \right)$$

General definition
\[X^2 = \sum_{i}^{n_{\text{max}}} \left(\frac{\sigma_{i}^{\text{exp}} - \sigma_{i}^{\text{th}}}{(1 + \nu_k \delta_{k(i)}^{\text{norm}})} \right)^2 \frac{\delta_{i}^2}{\delta_{i}^{\text{sta}} + \delta_{i}^{\text{sys}}} + \sum_{k} \nu_k^2 \]

- Introduce normalization parameters \(\nu_k \) considered to be normal distributed – implemented by a penalty term.
- The normalization parameters \(\nu_k \) defined in order to perform a re-normalization according to normalization error \(\delta_{k(i)}^{\text{norm}} \).
- The analytic solution of \(\nu_k \) for a fixed set of model parameters can be obtained from \(\frac{d X^2}{d \nu_k} = 0 \), since \(\nu_k \) are independent.
Error propagation

\[V[\sigma_{L+T}(\mathbf{p}, x, Q^2)] = \sum_{i,j} \text{cov}^{\mathbf{p}}_{i,j} \left(\frac{d \sigma_{L+T}(\mathbf{p}, x, Q^2)}{d p_i} \right) \left(\frac{d \sigma_{L+T}(\mathbf{p}, x, Q^2)}{d p_j} \right) \]

\[V \quad \text{variance} \]

\[\mathbf{p} \quad \text{parameter vector} \]

\[\text{cov}^{\mathbf{p}}_{i,j} \quad \text{covariance matrix for } \mathbf{p} \]
F_2 fit results (GD08)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Exp</th>
<th>n</th>
<th>χ^2/n</th>
<th>δ_k^{nor}</th>
<th>ν_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>SLAC-E49a</td>
<td>98</td>
<td>0.51</td>
<td>2.1</td>
<td>0.06</td>
</tr>
<tr>
<td>2.</td>
<td>SLAC-E49b</td>
<td>187</td>
<td>1.15</td>
<td>2.1</td>
<td>-0.28</td>
</tr>
<tr>
<td>3.</td>
<td>SLAC-E61</td>
<td>25</td>
<td>0.24</td>
<td>2.1</td>
<td>0.01</td>
</tr>
<tr>
<td>4.</td>
<td>SLAC-E87</td>
<td>94</td>
<td>0.68</td>
<td>2.1</td>
<td>0.07</td>
</tr>
<tr>
<td>5.</td>
<td>SLAC-E89a</td>
<td>72</td>
<td>1.06</td>
<td>2.1</td>
<td>1.31</td>
</tr>
<tr>
<td>6.</td>
<td>SLAC-E89b</td>
<td>98</td>
<td>1.01</td>
<td>2.1</td>
<td>0.17</td>
</tr>
<tr>
<td>7.</td>
<td>NMC 90 GeV</td>
<td>73</td>
<td>0.77</td>
<td>2.0</td>
<td>-0.37</td>
</tr>
<tr>
<td>8.</td>
<td>NMC 120 GeV</td>
<td>65</td>
<td>1.54</td>
<td>2.0</td>
<td>0.14</td>
</tr>
<tr>
<td>9.</td>
<td>NMC 200 GeV</td>
<td>75</td>
<td>1.13</td>
<td>2.0</td>
<td>-0.09</td>
</tr>
<tr>
<td>10.</td>
<td>NMC 280 GeV</td>
<td>79</td>
<td>0.94</td>
<td>2.0</td>
<td>-0.24</td>
</tr>
<tr>
<td>11.</td>
<td>E665</td>
<td>91</td>
<td>1.04</td>
<td>1.8</td>
<td>0.67</td>
</tr>
<tr>
<td>12.</td>
<td>BCDMS 100 GeV</td>
<td>58</td>
<td>1.13</td>
<td>3.0</td>
<td>-1.20</td>
</tr>
<tr>
<td>13.</td>
<td>BCDMS 120 GeV</td>
<td>62</td>
<td>0.73</td>
<td>3.0</td>
<td>0.03</td>
</tr>
<tr>
<td>14.</td>
<td>BCDMS 200 GeV</td>
<td>57</td>
<td>1.32</td>
<td>3.0</td>
<td>-1.09</td>
</tr>
<tr>
<td>15.</td>
<td>BCDMS 280 GeV</td>
<td>52</td>
<td>1.12</td>
<td>3.0</td>
<td>-1.03</td>
</tr>
<tr>
<td>16.</td>
<td>H1 94 a</td>
<td>37</td>
<td>0.35</td>
<td>3.9</td>
<td>0.05</td>
</tr>
<tr>
<td>17.</td>
<td>H1 94 b</td>
<td>156</td>
<td>0.63</td>
<td>1.5</td>
<td>1.13</td>
</tr>
<tr>
<td>18.</td>
<td>H1 SVX</td>
<td>44</td>
<td>0.49</td>
<td>3.0</td>
<td>-3.02</td>
</tr>
<tr>
<td>19.</td>
<td>ZEUS 94</td>
<td>188</td>
<td>1.15</td>
<td>2.0</td>
<td>1.66</td>
</tr>
<tr>
<td>20.</td>
<td>ZEUS BPC</td>
<td>34</td>
<td>0.40</td>
<td>2.4</td>
<td>-1.28</td>
</tr>
<tr>
<td>21.</td>
<td>ZEUS SVX</td>
<td>36</td>
<td>0.76</td>
<td>3.0</td>
<td>-1.00</td>
</tr>
<tr>
<td>22.</td>
<td>ZEUS 9697</td>
<td>242</td>
<td>0.75</td>
<td>2.0</td>
<td>0.09</td>
</tr>
<tr>
<td>23.</td>
<td>ZEUS 97</td>
<td>70</td>
<td>0.97</td>
<td>2.0</td>
<td>-2.23</td>
</tr>
<tr>
<td>24.</td>
<td>H1 99 00</td>
<td>147</td>
<td>1.01</td>
<td>1.5</td>
<td>-1.08</td>
</tr>
<tr>
<td>25.</td>
<td>H1 98 99</td>
<td>126</td>
<td>1.37</td>
<td>1.8</td>
<td>-1.38</td>
</tr>
<tr>
<td>26.</td>
<td>H1 94 97</td>
<td>130</td>
<td>0.79</td>
<td>1.5</td>
<td>-1.46</td>
</tr>
<tr>
<td>27.</td>
<td>H1 96 97 a</td>
<td>67</td>
<td>1.05</td>
<td>1.7</td>
<td>1.77</td>
</tr>
<tr>
<td>28.</td>
<td>H1 96 97 b</td>
<td>80</td>
<td>0.82</td>
<td>1.7</td>
<td>2.02</td>
</tr>
<tr>
<td>31.</td>
<td>this analysis, HERMES</td>
<td>81</td>
<td>0.40</td>
<td>6.4</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Total: $\chi/n = 0.93$
F_2 fit results (GD08)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Exp</th>
<th>n</th>
<th>χ^2/n</th>
<th>δ_{k}^{nor}</th>
<th>v_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>SLAC-E49a</td>
<td>98</td>
<td>0.51</td>
<td>2.1</td>
<td>0.06</td>
</tr>
<tr>
<td>2.</td>
<td>SLAC-E49b</td>
<td>187</td>
<td>1.15</td>
<td>2.1</td>
<td>-0.28</td>
</tr>
<tr>
<td>3.</td>
<td>SLAC-E61</td>
<td>25</td>
<td>0.24</td>
<td>2.1</td>
<td>0.01</td>
</tr>
<tr>
<td>4.</td>
<td>SLAC-E87</td>
<td>94</td>
<td>0.68</td>
<td>2.1</td>
<td>0.07</td>
</tr>
<tr>
<td>5.</td>
<td>SLAC-E89a</td>
<td>72</td>
<td>1.06</td>
<td>2.1</td>
<td>1.31</td>
</tr>
<tr>
<td>6.</td>
<td>SLAC-E89b</td>
<td>98</td>
<td>1.01</td>
<td>2.1</td>
<td>0.17</td>
</tr>
<tr>
<td>7.</td>
<td>NMC 90 GeV</td>
<td>73</td>
<td>0.77</td>
<td>2.0</td>
<td>-0.37</td>
</tr>
<tr>
<td>8.</td>
<td>NMC 120 GeV</td>
<td>65</td>
<td>1.54</td>
<td>2.0</td>
<td>0.14</td>
</tr>
<tr>
<td>9.</td>
<td>NMC 200 GeV</td>
<td>75</td>
<td>1.13</td>
<td>2.0</td>
<td>-0.09</td>
</tr>
<tr>
<td>10.</td>
<td>NMC 280 GeV</td>
<td>79</td>
<td>0.94</td>
<td>2.0</td>
<td>-0.24</td>
</tr>
<tr>
<td>11.</td>
<td>E665</td>
<td>91</td>
<td>1.04</td>
<td>1.8</td>
<td>0.67</td>
</tr>
<tr>
<td>12.</td>
<td>BCDMS 100 GeV</td>
<td>58</td>
<td>1.13</td>
<td>3.0</td>
<td>-1.20</td>
</tr>
<tr>
<td>13.</td>
<td>BCDMS 120 GeV</td>
<td>62</td>
<td>0.73</td>
<td>3.0</td>
<td>0.03</td>
</tr>
<tr>
<td>14.</td>
<td>BCDMS 200 GeV</td>
<td>57</td>
<td>1.32</td>
<td>3.0</td>
<td>-1.09</td>
</tr>
<tr>
<td>15.</td>
<td>BCDMS 280 GeV</td>
<td>52</td>
<td>1.12</td>
<td>3.0</td>
<td>-1.03</td>
</tr>
<tr>
<td>16.</td>
<td>H1 94 a</td>
<td>242</td>
<td>0.73</td>
<td>2.8</td>
<td>0.09</td>
</tr>
<tr>
<td>17.</td>
<td>H1 94 b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>H1 SVX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>ZEUS 96 a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>ZEUS 96 b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>ZEUS S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>ZEUS 96 c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>ZEUS 97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>ZEUS 98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>H1 99 00</td>
<td>147</td>
<td>1.01</td>
<td>1.5</td>
<td>-1.08</td>
</tr>
<tr>
<td>26.</td>
<td>H1 98 99</td>
<td>126</td>
<td>1.37</td>
<td>1.8</td>
<td>-1.38</td>
</tr>
<tr>
<td>27.</td>
<td>H1 94 97</td>
<td>130</td>
<td>1.79</td>
<td>1.5</td>
<td>-1.46</td>
</tr>
<tr>
<td>28.</td>
<td>H1 96 97 a</td>
<td>67</td>
<td>0.05</td>
<td>1.7</td>
<td>1.77</td>
</tr>
<tr>
<td>29.</td>
<td>H1 96 97 b</td>
<td>80</td>
<td>0.82</td>
<td>1.7</td>
<td>2.02</td>
</tr>
<tr>
<td>30.</td>
<td>this analysis, HERMES</td>
<td>81</td>
<td>0.40</td>
<td>6.4</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Total: $\chi/n = 0.93$

Low value of χ^2/n reflects conservative assignment of uncertainties: misalignment, overall normalization.
F_2 fit results (GD08)
Results on F_2^p

Proton

$F_2 \cdot c$

<table>
<thead>
<tr>
<th>x</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.008</td>
<td>1.6^{36}</td>
</tr>
<tr>
<td>0.011</td>
<td>1.6^{36}</td>
</tr>
<tr>
<td>0.015</td>
<td>1.6^{34}</td>
</tr>
<tr>
<td>0.019</td>
<td>1.6^{33}</td>
</tr>
<tr>
<td>0.025</td>
<td>1.6^{32}</td>
</tr>
<tr>
<td>0.033</td>
<td>1.6^{31}</td>
</tr>
<tr>
<td>0.040</td>
<td>1.6^{30}</td>
</tr>
<tr>
<td>0.049</td>
<td>1.6^{29}</td>
</tr>
<tr>
<td>0.060</td>
<td>1.6^{28}</td>
</tr>
<tr>
<td>0.073</td>
<td>1.6^{27}</td>
</tr>
<tr>
<td>0.089</td>
<td>1.6^{26}</td>
</tr>
<tr>
<td>0.108</td>
<td>1.6^{25}</td>
</tr>
<tr>
<td>0.134</td>
<td>1.6^{24}</td>
</tr>
<tr>
<td>0.166</td>
<td>1.6^{23}</td>
</tr>
<tr>
<td>0.211</td>
<td>1.6^{22}</td>
</tr>
<tr>
<td>0.273</td>
<td>1.6^{21}</td>
</tr>
<tr>
<td>0.366</td>
<td>1.6^{20}</td>
</tr>
<tr>
<td>0.509</td>
<td>1.6^{19}</td>
</tr>
<tr>
<td>0.679</td>
<td>1.6^{18}</td>
</tr>
</tbody>
</table>

Q^2, GeV2
Results on F_2^p

Proton

$F_2 \cdot c$

<table>
<thead>
<tr>
<th>x</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.008</td>
<td>1.6^{36}</td>
</tr>
<tr>
<td>0.011</td>
<td>1.6^{38}</td>
</tr>
<tr>
<td>0.015</td>
<td>1.6^{34}</td>
</tr>
<tr>
<td>0.019</td>
<td>1.6^{38}</td>
</tr>
<tr>
<td>0.025</td>
<td>1.6^{32}</td>
</tr>
<tr>
<td>0.033</td>
<td>1.6^{31}</td>
</tr>
<tr>
<td>0.040</td>
<td>1.6^{30}</td>
</tr>
<tr>
<td>0.049</td>
<td>1.6^{29}</td>
</tr>
<tr>
<td>0.060</td>
<td>1.6^{28}</td>
</tr>
<tr>
<td>0.073</td>
<td>1.6^{27}</td>
</tr>
<tr>
<td>0.089</td>
<td>1.6^{26}</td>
</tr>
<tr>
<td>0.108</td>
<td>1.6^{25}</td>
</tr>
<tr>
<td>0.134</td>
<td>1.6^{24}</td>
</tr>
<tr>
<td>0.166</td>
<td>1.6^{23}</td>
</tr>
<tr>
<td>0.211</td>
<td>1.6^{22}</td>
</tr>
<tr>
<td>0.273</td>
<td>1.6^{21}</td>
</tr>
<tr>
<td>0.366</td>
<td>1.6^{20}</td>
</tr>
<tr>
<td>0.509</td>
<td>1.6^{19}</td>
</tr>
<tr>
<td>0.679</td>
<td>1.6^{18}</td>
</tr>
</tbody>
</table>

Q^2, GeV2
Results on F_2^p

Proton

F_2^p vs Q^2, GeV2

GD08
GD07
ALLM97
SMC
Results on F_2^d

Deuterion

$F_2 \cdot c$

- SLAC
- BCDMS
- JLAB
- NMC
- this analysis
- E665

<table>
<thead>
<tr>
<th>$\langle x \rangle$</th>
<th>c'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.008</td>
<td>1.6^{+0}_{-26}</td>
</tr>
<tr>
<td>0.011</td>
<td>1.6^{+0}_{-28}</td>
</tr>
<tr>
<td>0.015</td>
<td>1.6^{+0}_{-24}</td>
</tr>
<tr>
<td>0.019</td>
<td>1.6^{+0}_{-28}</td>
</tr>
<tr>
<td>0.025</td>
<td>1.6^{+0}_{-12}</td>
</tr>
<tr>
<td>0.033</td>
<td>1.6^{+0}_{-31}</td>
</tr>
<tr>
<td>0.040</td>
<td>1.6^{+0}_{-30}</td>
</tr>
<tr>
<td>0.049</td>
<td>1.6^{+0}_{-29}</td>
</tr>
<tr>
<td>0.060</td>
<td>1.6^{+0}_{-28}</td>
</tr>
<tr>
<td>0.073</td>
<td>1.6^{+0}_{-27}</td>
</tr>
<tr>
<td>0.089</td>
<td>1.6^{+0}_{-26}</td>
</tr>
<tr>
<td>0.108</td>
<td>1.6^{+0}_{-28}</td>
</tr>
<tr>
<td>0.134</td>
<td>1.6^{+0}_{-24}</td>
</tr>
<tr>
<td>0.166</td>
<td>1.6^{+0}_{-23}</td>
</tr>
<tr>
<td>0.211</td>
<td>1.6^{+0}_{-22}</td>
</tr>
<tr>
<td>0.273</td>
<td>1.6^{+0}_{-21}</td>
</tr>
<tr>
<td>0.366</td>
<td>1.6^{+0}_{-20}</td>
</tr>
<tr>
<td>0.509</td>
<td>1.6^{+0}_{-19}</td>
</tr>
<tr>
<td>0.679</td>
<td>1.6^{+0}_{-18}</td>
</tr>
</tbody>
</table>

Q^2, GeV2
Results on F_2^d

Deuteron
Results on F_2^d

Deuteron

F_2^d vs. Q^2, GeV2

SMC
Why measuring *inclusive DIS cross sections* at Hermes?

\[F_2^p, F_2^d \]

World data fits
\[\sigma_{p,d}^{p,d} / \sigma_p \]

Gottfried Sum
\[\int \frac{dx}{x} \left(F_2^p - F_2^n \right) \]

\[d_v / u_v \]
Basic nucleon structure from sum rules

Quark-Parton Model

Adler sum rule

\[\int \frac{dx}{x} (F_2^p - F_2^n) = \int \frac{dx}{x} (F_2^p - F_2^n) = 2 \int dx (u_v - d_v) = 2 \]

Gross-Llewellyn Smith sum rule

\[\int dx (F_3^p + F_3^n) = \int dx (F_3^p + F_3^n) = 2 \int dx (u_v + d_v) = 6 \]

Gottfried sum rule

\[\ldots \ldots \]
Basic nucleon structure from sum rules

Quark-Parton Model

Adler sum rule
\[\int dx \frac{1}{x} (F_2^p - F_2^n) = \int dx \frac{1}{x} (F_2^\nu - F_2^{\overline{\nu}}) = 2 \int dx (u_v - d_v) = 2 \]

Gross-Llewellyn Smith sum rule
\[\int dx (F_3^p + F_3^n) = \int dx (F_3^\nu + F_3^{\overline{\nu}}) = 2 \int dx (u_v + d_v) = 6 \]

Gottfried sum rule
\[\int dx \frac{1}{x} (F_2^e,\mu^p - F_2^e,\mu^n) = \frac{1}{3} \int dx (u_v - d_v) + \frac{2}{3} \int dx (\overline{u} - \overline{d}) = \frac{1}{3} \]

- Gottfried sum rule (charged lepton scattering) → Sensitive to

- Difference between u and d valence quarks
- **Sea quark flavor symmetry** / asymmetry?
Sea quark asymmetry

Measurements, e.g.:

DIS data: SLAC, BCDMS, NMC, HERMES
Drell-Yan data: E288, (E772), NA51, E866

E.g.: NMC($Q^2=4$ GeV2): $I_G(0.004, 0.8) = 0.236\pm0.008$
Extrapolation: $I_G(0,1) = 0.258\pm0.017$
→ Significant violation of Gottfried sum rule
Sea flavor asymmetry $\bar{u} \neq \bar{d}$. $I_G(0,1) < 1/3$: excess of \bar{d} quarks over \bar{u} quarks.

\bar{d} quark excess confirmed in Drell-Yan and semi-inclusive analysis:
The Gottfried Integral

\[I_G(x_{\text{min}}, x_{\text{max}}) = \int_{x_{\text{min}}}^{x_{\text{max}}} \frac{(F_2^p(x) - F_2^n(x))}{x} \, dx = \int_{x_{\text{min}}}^{x_{\text{max}}} 2(F_2^p - F_2^d) \, dx / x \]

\[= \int_{x_{\text{min}}}^{x_{\text{max}}} 2 F_2^p \left(1 - \frac{F_2^d}{F_2^p} \right) \, dx / x \]

Evaluation of the **measured** Gottfried Integral:
- GD 08
- Fit to \(\sigma^d/\sigma^p \)

Evaluation of the **leading twist (LT)** Gottfried integral
- CTEQ6L
- Fit to \(\sigma^d/\sigma^p \) (LT)
Fits to σ^d/σ^p

\[
\frac{\sigma^d}{\sigma^p} \approx \frac{F_2^d}{F_2^p} \left(1 - \frac{1 - \epsilon}{(1 + \bar{R}(x))(1 + \epsilon \bar{R}(x))} \Delta R(x) \right)
\]

Relation of cross-section ratio to F_2-ratio

\[
\frac{F_2^d}{F_2^p} \approx \frac{F_2^{d,LT}}{F_2^{p,LT}}(x, Q^2)(1 + \frac{C^d(x) - C^p(x)}{Q^2})
\]

Higher twist effects

\[
\frac{F_2^{d,LT}}{F_2^{p,LT}}(x, Q^2) \approx b_1(x) + b_2(x) \ln Q^2
\]

Q^2 evolution

Parameterization

\[
\frac{\sigma^d}{\sigma^p} \approx \frac{F_2^d}{F_2^p} \left(b_1(x) + b_2(x) \ln Q^2 \right) \left(1 + \frac{C^d(x) - C^p(x)}{Q^2} \right) \left(1 - \frac{1 - \epsilon}{(1 + \bar{R}(x))(1 + \epsilon \bar{R}(x))} \Delta R(x) \right)
\]

- **4-parameter Fit** in each x bin
 based on world data from **NMC, SLAC, BCDMS, HERMES**
World data on σ^d/σ^p
4 Parameters from Fit of σ^d/σ^p to world data

- $F_2^d/F_2^p(Q^2=1)$: approaching unity for small x.
- $d (F_2^d/F_2^p) / d\ln Q^2$: tendency to negative slopes at high x.
- $C_d - C_p$: significant only at $x>0.2$
- $R_d - R_p$: Consistent with zero
Evaluation of the Gottfried integral

<table>
<thead>
<tr>
<th>Q^2</th>
<th>x - range</th>
<th>$I_G^{\text{meas.}}$</th>
<th>I_G^{LT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 GeV2</td>
<td>0.006-0.9</td>
<td>0.208±0.016</td>
<td>0.236±0.006</td>
</tr>
<tr>
<td>4 GeV2</td>
<td>0.006-0.9</td>
<td>0.228±0.006</td>
<td>0.228±0.006</td>
</tr>
<tr>
<td>10 GeV2</td>
<td>0.006-0.9</td>
<td>0.228±0.013</td>
<td>0.228±0.012</td>
</tr>
</tbody>
</table>
Extraction of d_v / u_v

$$\frac{F_2^d}{F_2^p} = \frac{1}{2} \left(1 + \frac{F_2^n}{F_2^p} \right) \approx \frac{1}{2} \left(1 + \frac{4 \frac{d_v}{u_v} + 1 + S_1}{4 + \frac{d_v}{u_v} + S_2} \right) \approx \frac{5}{2} \cdot \frac{1 + \frac{d_v}{u_v}}{4 + \frac{d_v}{u_v}}$$

$S_{1,2} = 0$

$S_1 = \frac{2}{u_v} (u_s + 4d_s + s_s)$

$S_2 = \frac{2}{u_v} (4u_s + d_s + s_s)$

- S_1 and S_2 taken from CTEQ6L
- Impact of S_1 and S_2 negligible at $x > 0.35$

- Comparison of d_v/u_v with CTEQ6L (LO) result reveals compatibility.
Summary

• First measurement of F_2^p and F_2^d at Hermes.

• Fit of the proton DIS cross section based on the ALLM functional form
 - Larger data set, 2821 data points, incl. Hermes
 - Self-consistent with respect to R
 - Normalization uncertainties taken into account
 - Covariance matrix provided

• Fit of the cross section ratio σ^d/σ^p
 - Extraction of the Gottfried integral
 - Compatibility with the NMC result
 - Indicates violation of Gottfried sum rule
 - No indication for Q^2 dependence found