towards a 3D imaging of hadrons: GPDs

- a brief introduction (an experimentalists point of view)
- a personal selection of recent results
- models & data
- conclusion & perspectives
nucleon studied for decades:

form factors
location of partons in nucleon

parton distributions
longitudinal momentum fraction x

generalised parton distributions (GPDs)
longitudinal momentum fraction x at transverse location b_\perp

only known framework to gain information on 3D picture of hadrons
why GPDs?

→ **3D structure of hadrons**: nucleon tomography
nucleon tomography

[M. Burkardt, M. Diehl 2002]

$FT(GPD)$: momentum space \rightarrow impact parameter space:
probing partons with specified long. momentum @transverse position b_\perp

polarised nucleon:

- **u-quark**
- **d-quark**

From lattice
why GPDs?

→ 3D structure of hadrons: nucleon tomography

→ complementary to TMDs:

Wigner distribution: ("mother" function)

\[W_p^u(\vec{r}, k) \]

probability to find a quark \(u \) in a nucleon \(P \) with a certain polarisation in a position \(r \) and momentum \(k \)

→ phenomena of single-spin asymmetries
what do we know about GPDs?

form factors

$$\sum_q e_q \int dx H^q(x, \xi, t) = F_1(t)$$

PDFs

$$H^q,g(x,0,0) = q(x)$$
$$\tilde{H}^{q,g}(x,0,0) = \Delta q(x)$$

$$E, \tilde{E} : \text{nucleon helicity flip} \rightarrow \text{don't appear in DIS}$$
$$\rightarrow \text{new information}$$

appear in factorisation theorem for hard exclusive processes
what do we know about GPDs?

\[Q^2, t << \]

appear in factorisation theorem for hard exclusive processes

\[H(x, \xi, t) \]

form factors

PDFs

\[x \neq x_{Bj}, \quad \xi \sim x_{Bj} \]

\[x \xi \]

anti-quarks

qq-pair

quarks

\[x \]

\[-1, -\xi, 0, \xi, +1 \]
GPDs and the spin puzzle

nucleon spin:

\[S_z^n = \frac{1}{2} = \frac{1}{2} \sum_q \Delta q + L_z^q + \Delta G + L_z^g = J_q + J_g \]

\[\approx 30\% \]

\[\approx \text{zero} \]

[X. Ji, 1997]

\[J_{q,g} = \lim_{t \to 0} \frac{1}{2} \int_{-1}^{1} x dx \left[H_{q,g}^q (x, \xi, t) + E_{q,g}^q (x, \xi, t) \right] \]

\[E^q \neq 0 \quad \text{requires orbital angular momentum} \]

proton helicity flipped but quark helicity conserved
how to access GPDs?
how to access GPDs?

quantum number of final state selects different GPDs:

- VM (ρ, ω, φ): H, E
- PS mesons (π, η): ̃H, ̃E
- DVCS (γ): H, E, ̃H, ̃E

<table>
<thead>
<tr>
<th>meson</th>
<th>GPDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>π^0</td>
<td>2Δu+Δd</td>
</tr>
<tr>
<td>η</td>
<td>2Δu−Δd</td>
</tr>
<tr>
<td>ρ^0</td>
<td>2u+d, 9g/4</td>
</tr>
<tr>
<td>ω</td>
<td>2u−d, 3g/4</td>
</tr>
<tr>
<td>φ</td>
<td>s, g</td>
</tr>
<tr>
<td>ρ^+</td>
<td>u−d</td>
</tr>
<tr>
<td>J/ψ</td>
<td>g</td>
</tr>
</tbody>
</table>

→ DVCS most clean process for gaining information on GPDs
→ meson provide info on quark flavours
 VM: quark and gluon GPDs appear at same order α_s

deeply virtual Compton scattering
wide angle Compton scattering
form factors
orbital angular momentum transverse localisation

lattice

exclusive meson production deep virtual / large t
deep inelastic scattering PDFs

ρ̅̅̅̅ annihilation γ → ππ, ...
timelike Compton scattering

→ DVCS most clean process for gaining information on GPDs
→ meson provide info on quark flavours
 VM: quark and gluon GPDs appear at same order α_s
accessing GPDs: caveats

- $H(x, \xi, t)$ but only ξ and t accessible experimentally
- x is mute variable (integrated over):
 - apart from cross-over trajectory ($\xi = x$) GPDs not directly accessible: deconvolution needed! (model dependent)
 - GPD moments cannot be directly revealed, extrapolations $t \to 0$ are model dependent

\[T^{DVCS} \sim \int_{-1}^{+1} H(x, \xi, t) \frac{dx}{x \pm \xi + i\varepsilon} + \ldots \]

\[\sim P \int_{-1}^{+1} H(x, \xi, t) \frac{dx}{x \pm \xi} + i\pi H(\pm \xi, \xi, t) + \ldots \]

cross sections & beam-charge asymmetry $\sim \text{Re}(T^{DVCS})$
beam or target-spin asymmetries $\sim \text{Im}(T^{DVCS})$
the ideal experiment for measuring hard exclusive processes
the ideal experiment for measuring hard exclusive processes

- high+variable beam energy
 - hard regime
 - wide kinematic range

- high luminosity
 - small cross sections
 - measure in 3 kinematic variables simultaneously

- complete event reconstruction
 - ensure exclusivity

... doesn’t exist (yet)...
the menu

- data from exclusive VM over wide kinematic range
 - JLab \rightarrow HERMES \rightarrow COMPASS \rightarrow HERA-collider
 \rightarrow role of quarks and gluons
 \rightarrow NLO corrections

- exclusive PS mesons production
 \rightarrow role of power corrections

- DVCS: from first signals \rightarrow detailed measurements

reminder: for meson production factorisation only for σ_L (σ_T suppressed by $1/Q^2$)
VM production @small x

W & t dependences: probe transition from soft \rightarrow hard regime

$\sigma \sim W^\delta$

\rightarrow steeper energy dependence of σ with increasing hard scale
VM production @small x

W & t dependences: probe transition from soft \rightarrow hard regime

$\sigma \sim e^{-b|t|}$

\rightarrow universality of b-slope parameter: point-like configurations dominate
VM production: small \rightarrow high x

- \times_B: 10^{-3} to 0.2 to 0.5

 - HERA-collider: $g+(\text{sea})$
 - COMPASS/HERMES: $g+(\text{sea})+q_v(\rho,\omega)$
 - JLab: $q_v(\rho,\omega)$

- NLO corrections to VM production are large: [M. Diehl, W. Kugler arXiv0708.1121]

- ρ^0 cross section @typical kinematics of compass / hermes / jlab12
VM production: small \(\rightarrow \) high \(x \)

\[10^{-3} \quad 10^{-1} \quad 0.2-0.5 \]

\[x_{\text{Bj}} \]

HERA-collider \(g+(\text{sea}) \)

COMPASS/HERMES \(g+(\text{sea})+q_{v}(\rho,\omega) \)

JLab \(q_{v}(\rho,\omega) \)

- ...despite: LO GPD model (handbag fact.) [S. Goloskokov, P. Kroll arXiv0711.4736]

- LO+power corrections

\(Q^2=3.8 \text{ GeV}^2 \)

\(\rho^0 \)

\(\sigma (\rho,\rho') \) [nb]
VM production: small \rightarrow high x

10^{-3} | 10^{-1} | 0.2-0.5
HERA-collider | COMPASS/HERMES | JLab
g+(sea) | g+(sea)+$q_v\,(\rho,\omega)$ | $q_v\,(\rho,\omega)$

• ...despite: LO GPD model (handbag fact.) [S. Goloskokov, P. Kroll arXiv0711.4736]

• LO+power corrections
deeply virtual compton scattering

DVCS

\[\rightarrow H, \tilde{H}, E, \tilde{E} \]

most clean channel for interpretation in terms of GPDs (full factorisation proof)

@HERMES/JLab:

DVCS << Bethe-Heitler

\[
\frac{d^4\sigma}{dx_B dQ^2 dt d\phi} \propto |T_{DVCS} + T_{BH}|^2 = |T_{DVCS}|^2 + |T_{BH}|^2 + T_{DVCS}^* T_{BH}^* + T_{DVCS}^* T_{BH}
\]

\[\rightarrow \text{leads to non-zero azimuthal asymmetries:} \]
DVCS @amplitude level

\[d\sigma \propto |\tau_{BH}|^2 + |\tau_{DVCS}|^2 + (\tau^*_{BH}\tau_{DVCS} + \tau^*_{DVCS}\tau_{BH}) \]

\[I \sim \Delta \sigma \]

\[\Delta \sigma_C \sim \cos\phi \cdot \text{Re}\{H + \tilde{\xi}H + \ldots\} \]

\[\Delta \sigma_{LU} \sim \sin\phi \cdot \text{Im}\{H + \tilde{\xi}H + kE\} \]

\[\Delta \sigma_{UL} \sim \sin\phi \cdot \text{Im}\{\tilde{H} + \tilde{\xi}H + \ldots\} \]

\[\Delta \sigma_{UT} \sim \sin(\phi - \phi_S)\cos\phi \cdot \text{Im}\{k(H - E) + \ldots\} \]

\(\xi = x_B/(2-x_B), k = t/4M^2\) kinematically suppressed @HERMES and JLab energies

\(\to\) different charges: e\(^+\) e\(^-\) (only @HERA!):

\(\to\) polarisation observables:
first DVCS signals: A_{LU}

-- from interference term --

[PRL87(2001)]

$\sin \phi$ dependence indicates dominance of handbag contribution
call for high statistics

JLab: E1-DVCS beam-spin asymmetry

Integrated over t

3D binning in x, Q^2 and t
call for new analysis methods

HERMES: combined analysis of charge & polarisation dependent data

→ separation of interference term + DVCS²

\[
\sigma_{LU}(\phi; P_1, e_1) = \sigma_{UU}(\phi) \cdot \left\{ 1 + P_1 A_{LU}^{DVCS}(\phi) + e_1 P_1 A_{LU}^{I}(\phi) + e_1 A_C(\phi) \right\}
\]

\[
\sum_{n=1}^{2} s_n \sin(n\phi) + \sum_{n=0}^{3} c_n \cos(n\phi)
\]
call for new analysis methods

HERMES: combined analysis of charge & polarisation dependent data

→ separation of interference term + DVCS2

GPD models: VGG

- w/o D-term
- with D-term

dual

- regge-ansatz for t-dependence
- factorised t-dependence

[Guzy, Teckentrup 2006]
call for new analysis methods

HERMES: combined analysis of charge & polarisation dependent data

→ separation of interference term + DVCS2

beam spin asymmetry: HERMES preliminary

$\propto \text{Im}[F_1 H]$

GPD models: VGG

- regge-ansatz for t-dependence
- factorised t-dependence

dual

- regge-ansatz for t-dependence
- factorised t-dependence
a word about GPD models

VGG: [Vanderhaegen, Guichon, Guidal 1999]

- double distributions; factorised or regge-inspired t-dependence
- D-term to restore full polynomiality
- skweness depending on free parameters b_{val} & b_{sea}
- includes tw-3 (WW approx)

dual: [Guzey, Teckentrup 2006]

- GPDs based on infinite sum of t channel resonances
- factorised or regge-inspired t-dependence
- tw-2 only
a word about GPD models

VGG: [Vanderhaegen, Guichon, Guidal 1999]
- double distributions; factorised or regge-inspired t-dependence
- D-term to restore full polynomiality
- skweness depending on free parameters b_{val} & b_{sea}
- includes tw-3 (WW approach)

dual: [Guzey, Teckentrup 2006]
- GPDs based on infinite sum of t-channel resonances
- factorised or regge-inspired t-dependence
- tw-2 only

→ describes well A_c and A_{UT} data
→ fails for A_{LU}
→ A_c favour ‘no D-term’ ← contradicts χ QSM & lattice results

→ call for new, more sophisticated parametrisations of GPDs

... more models on the way: e.g. generalisation of Mellin transform technique
...nevertheless: first attempts to constrain J_q

observables sensitive to E:
(J_q input parameter in ansatz for E)

$$J_q = \frac{1}{2} \int_{-1}^{1} x \, dx \left(H^q + E^q \right)$$

• DVCS A_{UT} : HERMES
• nDVCS A_{LU} : Hall A
• $\rho^0 A_{UT}$: HERMES
...nevertheless: first attempts to constrain J_q

J_q input parameter in ansatz for E:
...nevertheless: first attempts to constrain J_q

J_q input parameter in ansatz for E:

![Diagram showing A_{UT} and $\text{Im}(C_n)$ as functions of Q^2 and x_B, with different J_q values depicted.

$A_{UT,1}$

$J_u = 0.4$ $J_d = 0.2$

$J_u = 0.3$

$J_u = 0.6$

$J_d = 0.8$

VGG

HallA nDVCS A_{LU}

[PR99(2007)]
...nevertheless: first attempts to constrain J_q

J_q input parameter in ansatz for E:

- demonstrates model dependence of these analyses
- data are free to be reused at any time with new models 😊
conclusions

GPDs contain a wealth of new information on hadron structure at parton level → only known framework allowing a 3D imaging of hadrons ⬅️

... BUT they are intricate functions...

complementary to **TMDs**: relations **GPDs** ⬅️→ **TMDs** [M. Burkardt, M. Schlegel]

GPDs offer a way to measure transversity!

- increasing amount and precision of experimental data
- large “flow” of new data expected soon (JLab, HERMES, COMPASS)
- ‘standard’ models/parametrisations of GPDs too simple
 → models should describe large variety of different observables over wide kinematic range

prior to any conclusion about GPDs from data: call for new, more sophisticated parametrisations
perspectives for GPDs

@ new facilities:

- high beam energy (hard regime, wide kinematic range)
- very high luminosity (small xsections, multi-D analyses)
- complete event reconstruction (ensure exclusivity)

→ exploration of new channels: WACS, time like DVCS, ...

→ ideas for accessing GPDs @LHC, @GSI, ...

“gold rush” for studying hard exclusive processes & GPDs

“extraction” of GPDs requires filling the gap in kinematic coverage
perspectives for GPDs & TMDs

@ new facilities:

- high beam energy (hard regime, wide kinematic range)
- very high luminosity (small xsections, multi-D analyses)
- complete event reconstruction (ensure exclusivity)

→ exploration of new channels: WACS, time like DVCS, ...
→ ideas for accessing GPDs @LHC, @GSI, ...

- “gold rush” for studying hard exclusive processes & GPDs
- “extraction” of GPDs requires filling the gap in kinematic coverage