Are GPDs universal?
Experimental Access at HERMES, PANDA and ATLAS

Michael Düren
Universität Gießen

— Int. School of nuclear physics, Erice, Sept. 17, 2011 —

PS: I was here last time in 1999 talking about HERMES...
Generalized Parton Distributions

Quantum phase-space „tomography“ of the nucleon
Generalized Parton Distributions
and Generalized Distribution Amplitudes

GPDs and GDAs describe quarks and gluons in the nucleon

- spatial distributions (Form Factors)
- momentum distributions (Structure Functions)
- correlations in phase space (Wigner Distribution)
- spin and orbital angular momentum (Ji Sum Rule)
Wigner distribution in QM phase-space

- Wigner introduced the first well-defined phase-space distribution in quantum mechanics (1932) (despite of the uncertainty principle)
- Wigner function: \[W(x,p) = \int \psi^*(x - \frac{\eta}{2})\psi(x + \frac{\eta}{2})e^{ip\eta} \, d\eta \]

The Wigner function contains the most complete (one-body) info about a quantum system.

Example of a Wigner function (a particle passing an interferometer)
Generalized Parton Distribution

- A Wigner operator can be defined that describes quarks and gluons in the nucleon
- The reduced Wigner distribution is related to Generalized Parton distributions (GPDs)

GPDs describe e.g. correlations of transverse position and longitudinal momentum
Are GPDs/GDAs universal?

holo\textit{graphic picture of quarks in the nucleon}
Are GPDs/GDAs universal?

M. Düren, Univ. Giessen

ATLAS/AFP
CERN

GPD

104,000,000 GeV

GPD

27 GeV

HERMES
DESY

1.5-15 GeV

Energy of projectile in proton rest frame

M. Düren, Univ. Giessen
HERMES: a pioneering experiment

... from Ellis-Jaffe to Ji et al. ...
The HERMES Experiment

- Designed at times of the spin crisis
 - Ellis-Jaffe & Bjorken sum rule
 - strange quark polarization
- 12 years data taking 1995-2007

- Pioneering results of DVCS

- Today: most complete experimental access:
 - charge reversal (e⁺ and e⁻ beams)
 - beam spin reversal (both beam helicities)
 - target spin reversal (parallel, transverse, unpolarized)
 - target mass variation (H, D, He, N, Ne, Kr, Xe)
 - recoil and spectator proton detection
 - ...

M. Düren, Univ. Giessen
Deeply Virtual Compton Scattering (DVCS)

DVCS is the cleanest way to access GPDs

Factorization theorem is proven!

Handbag diagram separates
- hard scattering process (QED & QCD) (NLO) and
- non-perturbative structure of the nucleon: \(\text{GPD}(x, \xi, t, Q^2) \)

GPDs = probability amplitude for a nucleon to emit a parton with \(x+\xi \) and to absorb it with momentum fraction \(x-\xi \)

\[
\xi \approx \frac{x_{Bj}}{2 - x_{Bj}}
\]

M. Düren, Univ. Giessen
Exclusive $ep \rightarrow e\gamma\gamma$ cross section at HERMES

\[\frac{d\sigma}{dx_B \, dq^2 \, dt \, d\phi} = \frac{x_B \, e^6}{32 \, (2\pi)^4 \, Q^4 \, \sqrt{1 + \epsilon^2}} \left[|\tau_{BH}|^2 + |\tau_{DVCS}|^2 + \frac{1}{\tau_{DVCS} \, \tau_{BH} + \tau_{DVCS}^*} \right] \]

Direct access to DVCS matrix elements

- **BH**: LARGE + known
- **DVCS**: small + unknown
- **Interference**: medium + non-zero azimuthal asymmetries
Separation of amplitudes

- reversal of charge and spin

Asymmetry of interference term

\[
A_{LU}^I(\phi) \equiv \frac{(d\sigma^{+\rightarrow} - d\sigma^{\leftrightarrow}) \odot (d\sigma^{\rightarrow\rightarrow} - d\sigma^{\rightarrow\leftarrow})}{(d\sigma^{+\rightarrow} + d\sigma^{\leftrightarrow}) + (d\sigma^{\rightarrow\rightarrow} + d\sigma^{\rightarrow\leftarrow})}
\]

Asymmetry of DVCS

\[
A_{LU}^{DVCS}(\phi) \equiv \frac{(d\sigma^{+\rightarrow} - d\sigma^{\leftrightarrow}) \odot (d\sigma^{\rightarrow\rightarrow} - d\sigma^{\rightarrow\leftarrow})}{(d\sigma^{+\rightarrow} + d\sigma^{\leftrightarrow}) + (d\sigma^{\rightarrow\rightarrow} + d\sigma^{\rightarrow\leftarrow})}
\]
Separation of amplitudes

- reversal of charge and spin
- Fourier analysis of azimuthal modulation

Interference term asymmetrie

\[\mathcal{A}_{LU}^{I}(\phi) \equiv \frac{(d\sigma^{+\rightarrow} - d\sigma^{+\leftarrow}) \bigotimes (d\sigma^{-\rightarrow} - d\sigma^{-\leftarrow})}{(d\sigma^{+\rightarrow} + d\sigma^{+\leftarrow}) + (d\sigma^{-\rightarrow} + d\sigma^{-\leftarrow})} \]

\[= \frac{-K_{I}}{\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)} \left[\sum_{n=1}^{2} s_{n}^{1} \sin(n\phi) \right] \]

\[= \frac{K_{BH}}{\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{BH} \cos(n\phi) + \frac{1}{Q^2} \sum_{n=0}^{2} c_{n}^{DVCS} \cos(n\phi) \]
Access to GPD H, \tilde{H}, E

- **JHEP 11 (2009) 083**
- **Nucl. Phys. B829**
- **JHEP 06 (2008) 066**
- **JHEP 06 (2010) 019**
- **Nucl. Phys. B 842**

HERMES DVCS

<table>
<thead>
<tr>
<th>Amplitude Value</th>
<th>$\text{Re}(H)$</th>
<th>$\text{Im}(H)$</th>
<th>$\text{Re}(\tilde{H})$</th>
<th>$\text{Im}(\tilde{H})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^{+/-}$</td>
<td>$A_C^{\cos(0)}$</td>
<td>$A_C^{\sin(\phi)}$</td>
<td>$A_{LU,\text{DVCS}}$</td>
<td>$A_{L,\text{DVCS}}^{\sin(\phi)}$</td>
</tr>
<tr>
<td>$e_{RL/L}$</td>
<td>$A^{\cos(\phi)}$</td>
<td>$A^{\sin(\phi)}$</td>
<td>$A_{LT,\text{DVCS}}^{\cos(\phi)}$</td>
<td>$A_{LT,I}^{\sin(\phi)}$</td>
</tr>
<tr>
<td>p_{\perp}</td>
<td>$A_{UT,I}^{\cos(\phi)}$</td>
<td>$A_{UT,I}^{\sin(\phi)}$</td>
<td>$A_{LT,I}^{\cos(\phi)}$</td>
<td>$A_{LT,I}^{\sin(\phi)}$</td>
</tr>
<tr>
<td>$e_{RL/L}p_{\perp}$</td>
<td>$A_{UL}^{\cos(\phi)}$</td>
<td>$A_{UL}^{\sin(\phi)}$</td>
<td>$A_{UL}^{\cos(\phi)}$</td>
<td>$A_{UL}^{\sin(\phi)}$</td>
</tr>
<tr>
<td>$p_{RL/L}$</td>
<td>$A^{\cos(\phi)}$</td>
<td>$A^{\sin(\phi)}$</td>
<td>$A^{\cos(\phi)}$</td>
<td>$A^{\sin(\phi)}$</td>
</tr>
<tr>
<td>$e_{RL/L}p_{RL/L}$</td>
<td>$A^{\cos(\phi)}$</td>
<td>$A^{\sin(\phi)}$</td>
<td>$A^{\cos(\phi)}$</td>
<td>$A^{\sin(\phi)}$</td>
</tr>
</tbody>
</table>

Sensitive to J_u
HERMES recoilet detector

- Kinematic fit of complete DVCS event: $e p \rightarrow e' p' \gamma$
 - e': spectrometer
 - γ: calorimeter
 - p': recoil detector
- >99.9% purity

M. Düren, Univ. Giessen
Beam helicity asymmetry with/without recoil detection

HERMES PRELIMINARY 2006/07 data

3.4% scale uncertainty

$e^+ p \rightarrow e^+ p \gamma$

HERMES: $<Q^2>=2.46 \text{ GeV}^2$,
$<x_B>=0.10$, $<-t>=0.12 \text{ GeV}^2$

- Indication of $A(ep\rightarrow ep\gamma) > A(\text{no Recoil})$.
- Extraction of $A(\text{resonant})$ subject of an ongoing dedicated analysis.

fraction of $ep\rightarrow ep\gamma$

$ep\rightarrow e\Delta\gamma$
HERMES: Conclusion and Outlook

- GDPs are THE access to the nucleon structure
- HERMES is a pioneering experiment of DVCS
- Many more results from HERMES:
 - nuclear DVCS
 - exclusive meson production
 - ...

M. Düren, Univ. Giessen
PANDA: an experiment with time-reversed protons

... from spectroscopy to internal structure...
Time reversal / crossed diagrams

Scattering

Annihilation

Transition Distribution Amplitudes

Generalized Parton Distributions

Generalized Distributions Amplitudes
Measure GDAs at PANDA

Predictions and simulations in the QCD handbag approach

\[p\bar{p} \rightarrow \gamma\gamma \]

\[p\bar{p} \rightarrow \gamma\pi^0 \]

M. Düren, Univ. Giessen
Another Ansatz: Transition Distribution Amplitudes (TDA)

\[p\bar{p} \rightarrow \gamma\gamma^* \rightarrow \gamma e^+e^- \]

and

\[p\bar{p} \rightarrow \pi^0\gamma^* \rightarrow \pi^0 e^+e^- \]

Whatever the theory is PANDA should measure it

M. Düren, Univ. Giessen
MRI Düren, Univ. Giessen

23

Data taking >2018?

Disc DIRC is designed in Giessen
Highest luminosities needed for GDAs ... not before ... 202X
AFP at ATLAS

... ATLAS forward protons...
GPDs at LHC

diffractive Higgs production (~120-1200 GeV)
Diffractive Physics at LHC

1/3 of events at LHC are diffractive: rich physics
- more effort is needed to understand it

\[pp \to p + \gamma\gamma + p \]
ATLAS Forward Detectors

LUCID

ZDC in TAN

ALFA

AFP: 220m, 420m

Scattered Proton Tagging Region

\[\eta = -\ln \left(\tan \left(\frac{\theta}{2} \right) \right) \]

M. Düren, Univ. Giessen
Hamburg Beam Pipe

Moveable beam pipe with pockets to replace "Roman Pots"

M. Düren, Univ. Giessen
Cherenkov timing detectors

Quartz bars
Quartz fibres

10 ps time resolution needed to reconstruct vertex position at ATLAS IP within 2 mm
ALFA detector at +/- 240 m from ATLAS

ALFA hit map y vs x minimum bias trigger

ALFA fibre detector made in Giessen

M. Düren, Univ. Giessen
First elastic pp-data from the ALFA detector at ATLAS/LHC at $E=7$ TeV

ALFA hit maps y vs x
- minimum bias trigger
- coincidence trigger

ALFA y-postion west vs east

Beam optics: $\beta^*=90m$

June 28th, 2011

Elastic proton scattering:
- Proton stays intact after collision at 7 TeV

M. Düren, Univ. Giessen
Conclusions and Outlook

- New concepts of GPDs, Double Distributions, etc. are used to describe hard exclusive reactions, especially DVCS asymmetries.
- HERMES and JLab have done first explorative measurements of the orbital angular momentum of quarks in the proton.
- Results are consistent with models of the nucleon and with lattice QCD calculations.
- GPDs are also important for experiments at FAIR and LHC.
- PANDA will measure crossed processes.
- ATLAS will measure hard diffractive processes.
- A precision mapping of GPDs requires a polarized high luminosity ep-collider, EIC, e.g. at FAIR.
Thanks to …

- my group in Giessen
- my collaborators at HERMES, PANDA, ATLAS
- especially thanks for plots and transparencies from Ji, I. Brodski, Riedl, Yaschenko, Stenzel, and others …
- and the organizers for inviting me here