New results on Deeply Virtual Compton Scattering at HERA

Frank Ellinghaus
University of Colorado
for the H1, ZEUS and HERMES–Collaborations
ICHEP 2004, Beijing, China, August 2004

- Deeply Virtual Compton Scattering (DVCS)
- Generalized Parton Distributions (GPDs)
- DVCS Measurements at HERA
 - Cross Section Measurements at H1 and ZEUS
 - Azimuthal Asymmetries at HERMES
- Summary and Outlook
Deeply Virtual Compton Scattering (DVCS)

Simplest (hard exclusive) process: \(\gamma^* p \rightarrow p' \gamma \)

Deeply virtual photon generated by lepton scattering
\[e p \rightarrow e' p' \gamma \text{ (DVCS)} \]

- **Longitudinal momentum fractions:**
 \[x \in [-1, 1] \text{ (not accessible)} \]
 \[\xi \approx x_B/(2 - x_B) \]

- \(t = (q - q')^2 \)
 \((\gamma^* \rightarrow \gamma \text{ Momentum transfer}) \)

- \(Q^2 = -q^2 \)

DVCS-amplitudes can be expressed in terms of GPDs.

GPDs accessible in exclusive reactions \(\Rightarrow \) Use the simplest one . . .
GPDs ↔ Nucleon Structure

GPDs \((H, \tilde{H}, E, \tilde{E})\): Parameterization of the nucleon structure

Related to known quantities:
GPDs in the limit \(t \to 0\):
\[H(x, 0, 0) = q(x)\]

First moments of GPDs:
\[\int_{-1}^{1} dx \ H(x, \xi, t) = F_1(t)\]

Only access to unknown quantities:
Second moments of GPDs:
\[J_q = \lim_{t \to 0} \frac{1}{2} \int_{-1}^{1} dx \ x \ [H^q(x, \xi, t) + E^q(x, \xi, t)]\]
DVCS–BH INTERFERENCE

DVCS final state \(e + p \rightarrow e' + p' + \gamma \) is indistinguishable from the **Bethe-Heitler Process** (BH) \(\rightarrow \) **Amplitudes add coherently**

\[
\begin{align*}
\text{H1, ZEUS, HERMES, CLAS} \quad &\quad \text{H1, ZEUS}
\end{align*}
\]

Photon-Production cross section:

\[
d\sigma \propto \left| \tau_{\text{DVCS}} + \tau_{\text{BH}} \right|^2 = \left| \tau_{\text{DVCS}} \right|^2 + \left| \tau_{\text{BH}} \right|^2 + \left(\tau^*_{\text{DVCS}} \tau_{\text{BH}} + \tau^*_{\text{BH}} \tau_{\text{DVCS}} \right)
\]
DVCS MEASUREMENTS AT HERA

\[d\sigma \propto |\tau_{BH}|^2 + \left(\frac{\tau_{DVCS}^* \tau_{BH} + \tau_{BH}^* \tau_{DVCS}}{I} \right) + |\tau_{DVCS}|^2 \]

\[|\tau_{BH}|^2 \text{ CALCULABLE IN QED WITH THE KNOWLEDGE OF THE FORM FACTORS} \]

\[I \propto \pm \left(c_0^I + \sum_{n=1}^{3} c_n^I \cos(n\phi) + \lambda \sum_{n=1}^{2} s_n^I \sin(n\phi) \right) \]

DVCS CROSS SECTION (H1, ZEUS):
MEASUREMENT INTEGRATED OVER \(\phi \)
\(\rightarrow I = 0 \) (AT TWIST–2), SUBTRACT \(|\tau_{BH}|^2 \)

AZIMUTHAL ASYMMETRIES (HERMES):
DVCS AMPLITUDES DIRECTLY ACCESSIBLE VIA \(I \)
(GPDs ENTER IN LINEAR COMBINATIONS IN AMPLITUDES)
DVCS CANDIDATE SAMPLE

COLLIDER:

MC: LO PREDICTION
BY FFS AT $t = t_{\text{min}}$
ASSUME e^{bt}
WITH $b = 7 \text{ GeV}^{-2}$

Frank Ellinghaus, Beijing, China, August 2004
Cross Section Extraction

H1 Preliminary

- **$ep \rightarrow ep\gamma$ Total Cross Section Extraction:**

\[
\frac{d\sigma_{\text{bin}}}{dQ^2} = \frac{N_{\text{bin}} - N_{\text{backg}} - N_{\text{diss,p}}}{\epsilon A \Delta Q^2 L} (1 + \delta_{\text{rad}})
\]

- **$ep \rightarrow ep\gamma$ DVCS Cross Section Extraction:**

 $I \approx 0$, subtract BH

- **$\gamma^* p \rightarrow p\gamma$ Cross Section Extraction:** Photon flux factor \Rightarrow

Frank Ellinghaus, Beijing, China, August 2004
New Preliminary Result

NLO QCD predictions based on GPDs

\[b = b_0(Q^2) \]

\[5 < b_0 < 9 \text{ GeV}^{-2} \]

Models describe data, but normalization uncertainty

⇒ **Measure** \(t \)-dependence

Frank Ellinghaus, Beijing, China, August 2004
ALL H1 AND ZEUS RESULTS

At $b = 7$ GeV$^{-2}$:

Color dipole model DD (also Favart–Machado) and GPD based model describe the data

W^δ fit:

- **H1 Prel**: 0.98 ± 0.44
- **ZEUS e^+**: $0.75 \pm 0.15^{+0.08}_{-0.06}$

⇒ Indicates hard regime

Frank Ellinghaus, Beijing, China, August 2004
AZIMUTHAL ASYMMETRIES AT HERMES

\[d\sigma \propto |\tau_{DVCS}|^2 + |\tau_{BH}|^2 + (\tau_{DVCS}^* \tau_{BH} + \tau_{BH}^* \tau_{DVCS}) \]

\[I \propto \pm \left(c_0^I + \sum_{n=1}^{3} c_n^I \cos(n\phi) + \lambda \sum_{n=1}^{2} s_n^I \sin(n\phi) \right) \]

Beam–Charge Asymmetry (BCA) and Beam–Spin Asymmetry (BSA) at leading twist:

BCA : \(d\sigma(e^+p) - d\sigma(e^-p) \sim c_1^I \cos(\phi) \sim \cos(\phi) \times \text{Re} M^{1,1} \)

BSA : \(d\sigma(\overrightarrow{e^+}p) - d\sigma(\overleftarrow{e^+}p) \sim s_1^I \sin(\phi) \sim \sin(\phi) \times \text{Im} M^{1,1} \)

⇒ **Real and Imaginary Part** of the helicity conserving amplitude \(M^{1,1} \) can be accessed via Beam–Charge and Beam–Spin Asymmetry (Other Amplitudes → \(\cos 2\phi, \cos 3\phi, \sin 2\phi \))

Frank Ellinghaus, Beijing, China, August 2004
HERMES Event Selection

Fixed Target:

Beam:

27.6 GeV

\(e^+ \) AND \(e^- \)

\(\langle P \rangle \approx 55\% \)

No recoil detection \(\Rightarrow \)

Exclusivity via missing mass \(\Rightarrow MC \)

\(|\tau_{DVCS}|^2 < < |\tau_{BH}|^2\)

Frank Ellinghaus, Beijing, China, August 2004
Beam–Spin Asymmetry (BSA)

\[A_{LU}(\phi) = \frac{1}{<|P_b|>} \frac{\bar{N}(\phi)}{N(\phi)+N(\phi)} \]

\[e^+ p \rightarrow e^+ \gamma X \quad (M_x < 1.7 \text{ GeV}) \]

HERMES PREL. 2000 (refined)

\[P_1 + P_2 \sin \phi + P_3 \sin 2\phi \]

\[\phi \text{(rad)} \]

\[A_{LU} \]

\[\sin(\phi) \text{--MOMENT IN NON–EXCLUSIVE REGION: SMALL AND SLIGHTLY POSITIVE (→ π0)} \]

\[A_{LU} \text{ IN EXCLUSIVE BIN: EXPECTED sin(\phi) DEPENDENCE ⇒ Im } M^{1,1} \]

(Results from 1996/97 → PRL 87, 182001 (2001))

Frank Ellinghaus, Beijing, China, August 2004
Beam-Charge Asymmetry (BCA)

\[
A_C(\phi) = \frac{N^+(\phi) - N^-(\phi)}{N^+(\phi) + N^-(\phi)} \propto I \propto \pm (c_0^I + \sum_{n=1}^{3} c_n^I \cos(n\phi) + \lambda \sum_{n=1}^{2} s_n^I \sin(n\phi))
\]

\[
\chi^2/\text{ndf} : 11.47/8
\]

\[
c_0 = 0.009 \pm 0.020 \text{ (stat)}
\]

\[
c_1 = 0.059 \pm 0.028 \text{ (stat)}
\]

\[
s_1 = 0.094 \pm 0.028 \text{ (stat)}
\]

HERMES PRELIMINARY (\(\langle -t_c \rangle = 0.12 \text{ GeV}^2\))

\[
e^\pm p \to e^\pm \gamma X \quad (M_X < 1.7 \text{ GeV})
\]

\[
A_C = c_0 + c_1 \cos \phi + s_1 \sin \phi
\]

HERMES PRELIMINARY (refined analysis, \(\langle -t_c \rangle = 0.12 \text{ GeV}^2\))

\[
e^\pm p \to e^\pm \gamma X
\]

\[
A_C \quad \text{in exclusive bin: \textbf{Expected}}
\]

\[
\cos(\phi) \text{ dependence} \Rightarrow \Re M^{1,1}
\]

\[
\sin \phi \text{ due to polarized beam}
\]

cos(\phi)--Moments zero at higher missing mass

Frank Ellinghaus, Beijing, China, August 2004
The latest News! → BCA versus \(t \)

More:

First BCA on deuterium!

Coherent production only in first \(t \)-bin (\(\approx 40\% \))

→ No effect seen

→ \(\approx \) p-target

Difference in last bin

(Neutron resonances, neutron)

(BSA on deuterium, neon → hep ex/0212019)

GPD model

(Vanderhaeghen et al.)

Tiny \(e^-p \) sample (\(L \approx 10 \text{ pb}^{-1} \))

⇒ \(t \)-dependence of BCA has high sensitivity to GPD models!

Frank Ellinghaus, Beijing, China, August 2004
SUMMARY

- **DVCS-Cross-Sections/Amplitudes** ⇒ GPDs
 ⇒ Structure of Hadrons

- **HERA:** First measurements of cross-sections and azimuthal asymmetries

- **HERA I:** Results in agreement with different models
 ⇒ Basic Concept works ⇒ first constraints on models

- **HERA II:**
 - Also asymmetry measurements at H1,ZEUS (spin rotators)
 - Ensure exclusivity ⇒ detect the proton
 (VFPS at H1, Recoil detector at HERMES)
 - Statistics . . .

⇒ **HERA** (wide kinematic range, e^+/e, polarized beam) is the place to study DVCS/GPDs