HERMES results on azimuthal modulations in the spin-independent SIDIS cross section

Madrid, DIS 2009

Francesca Giordano
DESY, Hamburg

For the HERMES collaboration
Unpolarized Semi-Inclusive DIS

\[\frac{d^3 \sigma}{dx \ dy \ dz} = \frac{\alpha^2}{xyQ^2} \left(1 + \frac{\gamma^2}{2x} \right) \left\{ A(y) \ F_{UU,T} + B(y) \ F_{UU,L} \right\} \]

Collinear approximation

\[F_\gamma = F_\gamma(x, y, z) \]
Unpolarized Semi-Inclusive DIS

\[\frac{d^3 \sigma}{dx \; dy \; dz} = \frac{\alpha^2}{xyQ^2} \left(1 + \frac{\gamma^2}{2x} \right) \{ A(y) \; F_{UU,T} + B(y) \; F_{UU,L} \} \]

Collinear approximation

\[F_{\ldots} = F_{\ldots}(x, y, z) \]
Unpolarized Semi-Inclusive DIS

\[
\frac{d^5\sigma}{dx\ dy\ dz\ d\phi_h\ dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ A(y)\ F_{UU,T} + B(y)\ F_{UU,L} \right\} \\
+ C(y)\ \cos\phi_h\ F_{UU}^{\cos\phi_h} + B(y)\ \cos2\phi_h\ F_{UU}^{\cos2\phi_h} \right\}
\]

\[
F_{\ldots} = F_{\ldots}(x, y, z, P_{h\perp})
\]
Unpolarized Semi-Inclusive DIS

\[
\frac{d^5 \sigma}{dx
dy
dz
d\phi_h dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ A(y) \, F_{UU,T} + B(y) \, F_{UU,L} \right. \\
+ C(y) \cos \phi_h \, F_{UU}^{\cos \phi_h} + B(y) \cos 2\phi_h \, F_{UU}^{\cos 2\phi_h} \right\}
\]

\[
\langle \cos n \phi_h \rangle(x, y, z, P_{h\perp}) = \frac{\int \cos n \phi_h \sigma^{(5)} d\phi_h}{\int \sigma^{(5)} d\phi_h}
\]
Leading twist expansion

\[F_{UU,T} \propto C[f_1D_1] \]
Leading twist expansion

\[F_{UU,T} \propto C[f_1 D_1] \]

Distribution Functions (DF)

<table>
<thead>
<tr>
<th>N / q</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>(f_1)</td>
<td>(h_1^\perp)</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>(g_1)</td>
<td>(h_{1L})</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>(f_{1T})</td>
<td>(g_{1T})</td>
<td>(h_1, h_{1T})</td>
</tr>
</tbody>
</table>

Fragmentation Functions (FF)

<table>
<thead>
<tr>
<th>q/h</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>(D_1)</td>
</tr>
<tr>
<td>T</td>
<td>(H_{1}^\perp)</td>
</tr>
</tbody>
</table>
Leading twist expansion

Distribution Functions (DF)

<table>
<thead>
<tr>
<th>N / q</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>f_1</td>
<td>h_1^\perp</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>g_1</td>
<td>h_{1L}^\perp</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>f_{1T}^\perp</td>
<td>g_{1T}^\perp</td>
<td>h_1, h_{1T}^\perp</td>
</tr>
</tbody>
</table>

Fragmentation Functions (FF)

<table>
<thead>
<tr>
<th>q/h</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>D_1</td>
</tr>
<tr>
<td>T</td>
<td>H_{1T}^\perp</td>
</tr>
</tbody>
</table>

\[F_{UU,T} \propto C[f_1D_1] \]
Leading twist expansion

\[h_1 \] = Boer-Mulders function

CHIRAL-ODD

\[C \left[h_1^\perp H_1^\perp \right] \]

chiral-odd

DF

CHIRAL-EVEN!

FF

<table>
<thead>
<tr>
<th>N / q</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>(f_1)</td>
<td>(h_1)</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>(g_1)</td>
<td>(h_{1L})</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>(f_{1T})</td>
<td>(g_{1T})</td>
<td>(h_1, h_{1T})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>q/h</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>(D_1)</td>
</tr>
<tr>
<td>T</td>
<td>(H_1^\perp)</td>
</tr>
</tbody>
</table>
Leading twist azimuthal modulation

\[F_{UU}^{\cos 2\phi_h} = C \left[-\frac{2(\vec{P}_h \cdot \vec{k}_T)(\vec{P}_h \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T}{MM_h} \right] h_{1^\perp} H_{1^\perp} \]

(Implicit sum over quark flavours)
Leading & next to leading twist azimuthal modulation

\[F_{UU}^{\cos 2\phi_h} = C \left[-2(\vec{P}_{h\perp} \cdot \vec{k}_T)(\vec{P}_{h\perp} \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T \frac{h_1^\perp H_1^\perp}{MM_h} \right] \]

\[F_{UU}^{\cos \phi_h} = \frac{2M}{Q} C \left[-\frac{\vec{P}_{h\perp} \cdot \vec{p}_T}{M_h} x h_1^\perp H_1^\perp - \frac{\vec{P}_{h\perp} \cdot \vec{k}_T}{M} x f_1 D_1 + \ldots \right] \]

...neglecting interaction dependent terms....

(Implicit sum over quark flavours)
Cahn and Boer-Mulders effects

\[
F_{UU}^{\cos 2\phi_h} = C \left[-\frac{2(\hat{P}_{h\perp} \cdot \vec{k}_T)(\hat{P}_{h\perp} \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T}{MM_h} h_1 H_1 \right]
\]

\[
F_{UU}^{\cos \phi_h} = \frac{2M}{Q} C \left[-\frac{\hat{P}_{h\perp} \cdot \vec{p}_T}{M_h} x h_1 H_1 \right] - \frac{\hat{P}_{h\perp} \cdot \vec{k}_T}{M} x f_1 D_1 + \ldots
\]

CAHN EFFECT
Cahn and Boer-Mulders effects

\[F_{UU}^{\cos \phi} = \frac{2M}{Q} C \left[-\frac{\vec{P}_{h \perp} \cdot \vec{p}_T}{M_h} x h_1^\perp H_1^\perp - \frac{\vec{P}_{h \perp} \cdot \vec{k}_T}{M} x f_1 D_1 + \ldots \right] \]

\[F_{UU}^{\cos 2\phi} = C \left[-\frac{2(\vec{P}_{h \perp} \cdot \vec{k}_T)(\vec{P}_{h \perp} \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T}{MM_h} h_1^\perp H_1^\perp \right] \]
HERa MEasurement of Spin

HERA storage ring @ DESY
HERMES spectrometer

Resolution: $\Delta p/p \sim 1-2\% \quad \Delta \theta < \sim 0.6 \text{ mrad}$

Electron-hadron separation efficiency ~ 98-99%

Hadron identification with dual-radiator RICH
HERMES spectrometer

Resolution: $\Delta p/p \sim 1-2\% \; \Delta \theta < \sim 0.6 \text{ mrad}$

Electron-hadron separation efficiency $\sim 98-99\%$

Hadron identification with dual-radiator RICH
HERMES spectrometer

Aerogel $n=1.03$

C_4F_{10} $n=1.0014$

$p/\Delta \theta \sim 1-2\%$ $\Delta \theta \sim 0.6$ mrad

Electron-hadron separation efficiency $\sim 98-99\%$

Hadron identification with dual-radiator RICH
Experimental extraction

\[n^{\text{EXP}} = \int \sigma_0(w) \left[1 + A(w) \cos \phi_h + B(w) \cos 2\phi_h \right] L \, dw \]

\[w = (x, y, z, P_{h\perp}) \]

\[A = 2 \langle \cos \phi_h \rangle \]

\[B = 2 \langle \cos 2\phi_h \rangle \]
Experimental extraction

\[n^{\text{EXP}} = \int \sigma_0(w) \left[1 + A(w)\cos\phi_h + B(w)\cos2\phi_h \right] \epsilon_{\text{acc}}(w, \phi_h)\epsilon_{\text{RAD}}(w, \phi_h) \ L \ dw \]

\[w = (x, y, z, P_{h\perp}) \]
Experimental extraction

\[n^{\text{EXP}} = \int \sigma_0(w) \left[1 + A(w) \cos \phi_h + B(w) \cos 2\phi_h \right] \varepsilon_{\text{acc}}(w, \phi_h) \varepsilon_{\text{RAD}}(w, \phi_h) \, L \, dw \]

w = (x, y, z, P_{h\perp})

unfolding procedure
Experimental extraction

\[n^{\text{EXP}} = \int \sigma_0(w) \left[1 + A(w) \cos \phi_h + B(w) \cos 2\phi_h \right] \varepsilon_{\text{acc}}(w, \phi_h) \varepsilon_{\text{RAD}}(w, \phi_h) L \, dw \]

\[w = (x, y, z, P_{h\perp}) \]

Multidimensional \((w) \) unfolding procedure
The unfolding procedure

\[n_{\text{EXP}} = S \ n_{\text{BORN}} + n_{\text{Bg}} \]
The unfolding procedure

\[n_{\text{EXP}} = S \cdot n_{\text{BORN}} + n_{\text{Bg}} \]

Probability that an event generated with kinematics \(w \) is measured with kinematics \(w' \)
The unfolding procedure

\[n_{\text{EXP}} = S n_{\text{BORN}} + n_{\text{Bg}} \]

Probability that an event generated with kinematics \(w \) is measured with kinematics \(w' \)

Accounts for acceptance, radiative and smearing effects

\(\Rightarrow \) depends only on instrumental and radiative effects
The unfolding procedure

\[n_{\text{EXP}} = S \cdot n_{\text{BORN}} + n_{Bg} \]

- Probability that an event generated with kinematics \(w \) is measured with kinematics \(w' \)
- Accounts for acceptance, radiative and smearing effects
- Depends only on instrumental and radiative effects

Includes the events smeared into the acceptance
The unfolding procedure

\[n_{\text{EXP}} = S \cdot n_{\text{BORN}} + n_{\text{Bg}} \]

\[n_{\text{BORN}} = S^{-1} \left[n_{\text{EXP}} - n_{\text{Bg}} \right] \]
Why a multi-dimensional analysis?

\[
n^{MC+Cahn} = \int \sigma_0(w) \left[1 + A(w)\cos\phi_h + B(w)\cos2\phi_h\right] \epsilon_{acc}(w,\phi_h)\epsilon_{RAD}(w,\phi_h) \ L \ dw
\]
Why a multi-dimensional analysis?
Why a multi-dimensional analysis?

4D binned in \((x, y, z, P_{h\perp})\)
The multi-dimensional analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Bin limits</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.023</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0.042</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.078</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.145</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>0.3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>0.2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>$P_{h\perp}$</td>
<td>0.05</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
The multi-dimensional analysis
The multi-dimensional analysis

\[
\langle \cos \phi_h \rangle = \frac{\sum \sigma^{A\pi}(\omega_{x_i=x_b}) \langle \cos \phi \rangle_{x_i=x_b}}{\sum \sigma^{A\pi}(\omega_{x_i=x_b})}
\]

projection

First y bin

\(z \)

\(P_{h,\perp} \)

x bin=1

x bin=2

x bin=3

x bin=4

x bin=5
The multi-dimensional analysis

\[
\langle \cos \phi_h \rangle (x_b) = \frac{\int_{0.3}^{0.85} dy \int_{0.05}^{0.2} dz \int_{0.05}^{0.75} dP_{h\perp}^2 \sigma_{A\pi} (\omega_{x_i=x_b}) \langle \cos \phi \rangle (x_i=x_b) \langle \cos \phi \rangle (x_i=x_b)}{\sum \sigma_{A\pi} (\omega_{x_i=x_b}) \langle \cos \phi \rangle (x_i=x_b)}
\]

First y bin

x bin=1
x bin=2
x bin=3
x bin=4
x bin=5
Results
Hydrogen data
Hydrogen data

\[H_{1}^{\perp, u \rightarrow \pi^{+}} \approx -H_{1}^{\perp, u \rightarrow \pi^{-}} \]

M. Anselmino et al.,
Hydrogen data

\[F_{UU}^{\cos 2\phi_h} = C \left[-\frac{2(\hat{P}_{h\perp} \cdot \vec{k}_T)(\hat{P}_{h\perp} \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T}{MM_h} \right] \]

\[H_{1, u \rightarrow \pi^-} \approx -H_{1, u \rightarrow \pi^+} \]
Hydrogen data

\[
F_{UU}^{\cos \phi_h} = \frac{2M}{Q} C \left[-\frac{\hat{P}_{h \perp} \cdot \vec{p}_T}{M_h} x h_1^{\perp} H_1^{\perp} - \frac{\hat{P}_{h \perp} \cdot \vec{k}_T}{M} x f_1 D_1 + \ldots \right]
\]

\[
H_1^{\perp, u \rightarrow \pi^-} \approx -H_1^{\perp, u \rightarrow \pi^+}
\]
$\cos 2\phi_h$ interpretation

L. P. Gamberg and G. R. Goldstein,
\[\cos 2\phi_h \] interpretation

\[\begin{align*}
\pi^+ & \quad \text{HERMES} \\
\pi^- & \\
\end{align*} \]

- All contributions
- Boer-Mulders
- Cahn (twist 4)

V. Barone et al.
cos2φ_h interpretation

B. Zhang et al.,
\[\cos \phi_h \] interpretation

M. Anselmino et al.,

Phys. Rev. D71:074006, 2005

cosφₕ interpretation

\[F_{UU}^{\cos \phi_h} = \frac{2M}{Q} C \left[-\frac{\vec{P}_{h\perp} \cdot \vec{P}_T}{M_h} x \ h_1^\perp H_1^\perp - \frac{\vec{P}_{h\perp} \cdot \vec{k}_T}{M} x \ f_1 D_1 + \ldots \right] \]
Hydrogen vs. Deuterium data

$h^+_{1,u} \approx h^+_{1,d}$
Hydrogen vs. Deuterium data

\[h_{1,u} \approx h_{1,d} \]
The existence of an intrinsic **quark transverse motion** gives origin to an azimuthal asymmetry in the hadron production direction:

- **Cahn effect**: an (higher twist) azimuthal modulation related to the existence of intrinsic quark motion;
- **Boer-Mulders effect**: a leading twist asymmetry originated from the correlation between the quark transverse motion and transverse spin (a kind of **spin-orbit effect**).
Summary

- The existence of an intrinsic **quark transverse motion** gives origin to an azimuthal asymmetry in the hadron production direction:
 - **Cahn effect**: an (higher twist) azimuthal modulation related to the existence of intrinsic quark motion;
 - **Boer-Mulders effect**: a leading twist asymmetry originated from the correlation between the quark transverse motion and transverse spin (a kind of *spin-orbit effect*).

- **Monte Carlo studies show that**:
 - A **fully differential unfolding procedure** is essential to disentangle the ‘physical’ azimuthal asymmetry from the acceptance and radiative modulations of the cross-section.
Summary

- The existence of an intrinsic **quark transverse motion** gives origin to an azimuthal asymmetry in the hadron production direction:
 - **Cahn effect**: an (higher twist) azimuthal modulation related to the existence of intrinsic quark motion;
 - **Boer-Mulders effect**: a leading twist asymmetry originated from the correlation between the quark transverse motion and transverse spin (a kind of *spin-orbit effect*).

- **Monte Carlo studies show that:**
 - A **fully differential unfolding procedure** is essential to disentangle the ‘physical’ azimuthal asymmetry from the acceptance and radiative modulations of the cross-section.

- **Flavour dependent experimental results:**
 - Negative $<\cos\phi_h>$ **moments** are extracted for positive and negative hadrons, with a larger absolute value for the positive ones
 - The results for the $<\cos2\phi_h>$ **moments** are negative for the positive hadrons and positive for the negative hadrons
 - Evidence of a non-zero Boer-Mulders function
Summary

The existence of an intrinsic **quark transverse motion** gives origin to an azimuthal asymmetry in the hadron production direction:

- **Cahn effect**: an (higher twist) azimuthal modulation related to the existence of quark intrinsic motion;
- **Boer-Mulders effect**: a leading twist asymmetry originated by the correlation between the quark transverse motion and spin (a kind of spin-orbit effect).

Monte Carlo studies show that:

- A **fully differential unfolding procedure** is able to disentangle the ‘physical’ azimuthal asymmetry from the acceptance and radiative modulations of the cross-section.

Flavour dependent experimental results:

- Negative $<\cos \phi_h>$ moments are extracted for positive and negative hadrons, with a larger absolute value for the positive ones.
- The results for the $<\cos 2\phi_h>$ moments are negative for the positive hadrons and positive for the negative hadrons:
 - Evidence of a non-zero Boer-Mulders function
Compass results
Experimental status: $\langle \cos \phi_h \rangle$

- Negative results in all the existing measurements
- No distinction between hadron type or charge
Experimental status: $\langle \cos 2\phi_h \rangle$

- **Positive results in all the existing measurements**
- **No distinction between hadron type or charge (in SIDIS experiments)**
- **Indication of small Boer-Mulders function for the sea quark (from Drell-Yan experiments)**