measurement of the Collins and Sivers asymmetries from a transversely polarized hydrogen target

Francesca Giordano
INFN sez. Ferrara
Università degli studi di Ferrara

For the hermes collaboration
HERA MEasurement of Spin

HERA storage ring @ DESY
Electron beam (27.6GeV/c) off a transversely polarised atomic hydrogen target

$<P>\sim 74\pm 3\%$
Electron beam (27.6GeV/c) off a transversely polarised atomic hydrogen target $<P> \sim 74\pm 3\%$
HERMES spectrometer

Resolution: $\Delta p/p \sim 1\%-2\%$ $\Delta \theta < \sim 0.6$ mrad

Electron-hadron separation efficiency $\sim 98\%-99\%$

Hadron identification with dual-radiator RICH
HERMES spectrometer

Resolution: $\Delta p/p \sim 1\text{-}2\%$, $\Delta \theta \sim 0.6$ mrad
Electron-hadron separation efficiency $\sim 98\text{-}99\%$
Hadron identification with dual-radiator RICH
Dual radiator **Ring Imaging C**H**erenkov**
Dual radiator Ring Imaging CHerenkov

Aerogel $n=1.03$

C_4F_{10} $n=1.0014$
Dual radiator **Ring Imaging C**H**erenkov**

![Diagram showing Cerenkov imaging with different radiator materials](image)

- **Aerogel** $n=1.03$ with $\varepsilon \approx 98\%$
- **C_4F_{10}** $n=1.0014$ with $\varepsilon \approx 88\%$
- **C_4F_{10}** $n=1.0014$ with $\varepsilon \approx 85\%$
Nucleon quark structure

At leading twist there are 3 fundamental quark distribution functions:

Momentum distribution $q(x)$

\[q(x) = \text{const} + \text{const} \]
Nucleon quark structure

At leading twist there are 3 fundamental quark distribution functions:

Momentum distribution $q(x)$

WELL KNOWN

$\bullet = \bullet + \bullet$
Nucleon quark structure

At leading twist there are 3 fundamental quark distribution functions:

Momentum distribution $q(x)$

Helicity distribution $\Delta q(x)$
Nucleon quark structure

At leading twist there are 3 fundamental quark distribution functions:

Momentum distribution $q(x)$

Helicity distribution $\Delta q(x)$
Nucleon quark structure

At leading twist there are 3 fundamental quark distribution functions:

Momentum distribution \(q(x) \)

Helicity distribution \(\Delta q(x) \)

Transversity distribution \(\delta q(x) \)
Nucleon quark structure

At leading twist there are 3 fundamental quark distribution functions:

- Momentum distribution $q(x)$
- Helicity distribution $\Delta q(x)$
- Transversity distribution $\delta q(x)$
Transversity

The transversity distribution function is associated with an helicity flip of the struck quark. For this reason it is known as a chiral-odd function, and it cannot be probed in Inclusive Deep Inelastic Scattering.
Transversity

The transversity distribution function is associated with an helicity flip of the struck quark. For this reason it is known as a chiral-odd function, and it cannot be probed in Inclusive Deep Inelastic Scattering.

Semi Inclusive Deep Inelastic Scattering: transversity is coupled to a chiral-odd Fragmentation Function;
Transversity

The transversity distribution function is associated with an helicity flip of the struck quark. For this reason it is known as a **chiral-odd** function, and it cannot be probed in Inclusive Deep Inelastic Scattering.

Semi Inclusive Deep Inelastic Scattering: transversity is coupled to a chiral-odd **Fragmentation Function**;

\[
\delta q \otimes FF \rightarrow h
\]

- **chiral-odd DF**
- **chiral-odd FF**

CHIRAL-EVEN!
Collins mechanism

The Collins Fragmentation Function $H_1^+(z,k_T^2)$ describes the correlation between the transverse polarization of the struck quark and the transverse momentum of the produced unpolarised hadron.

The Collins mechanism produces an **azimuthal asymmetry** in the direction of the outgoing hadrons.
Azimuthal Single Spin Asymmetries

\[A_{UT}^h = \frac{\sigma_h^{\uparrow \downarrow} - \sigma_h^{\uparrow \uparrow}}{\sigma_h^{\uparrow \downarrow} + \sigma_h^{\uparrow \uparrow}} \]
Azimuthal Single Spin Asymmetries

\[A_{UT}^h = \frac{\sigma_h^{\uparrow\downarrow} - \sigma_h^{\uparrow\uparrow}}{\sigma_h^{\uparrow\downarrow} + \sigma_h^{\uparrow\uparrow}} \]

\[A_{UT}^h \propto 2 |S_T| \sin(\phi + \phi_s) \sum q e_q^2 I\left[\frac{(k_T \cdot \hat{P}_{h\perp})}{M_h} \delta q(x, p_T^2) H_1^{\perp q}(z, k_T^2)\right] \]

\[\frac{A(y)\sum q e_q^2 q(x, k_T^2) D_1^q(z, k_T^2)}{A(y)\sum q e_q^2 q(x, k_T^2) D_1^q(z, k_T^2)} \]
Azimuthal Single Spin Asymmetries

\[A_{UT}^h = \frac{\sigma_{h \uparrow \downarrow} - \sigma_{h \uparrow \uparrow}}{\sigma_{h \uparrow \downarrow} + \sigma_{h \uparrow \uparrow}} \]

\[A_{UT}^h \propto 2|S_T| \sin(\varphi + \varphi_S) \sum_q e_q^2 \frac{I[(\vec{k}_T \cdot \hat{P}_{h\perp})]}{M_h} \left\{ \delta q(x, p_T^2) H_1^{\perp q}(z, k_T^2) \right\} \]

\[\frac{A(y) \sum_q e_q^2 q(x, k_T^2) D_1^q(z, k_T^2)}{A(y) \sum_q e_q^2 q(x, k_T^2) D_1^q(z, k_T^2)} \]
Azimuthal Single Spin Asymmetries

\[A_{UT}^h = \frac{\sigma_{h \uparrow \downarrow} - \sigma_{h \uparrow \uparrow}}{\sigma_{h \uparrow \downarrow} + \sigma_{h \uparrow \uparrow}} \]

\[A_{UT}^h \propto 2|S_T| \sin(\varphi + \varphi_s) \sum_q e_q^2 \frac{I[(\vec{k}_T \cdot \hat{P}_{h \perp})]}{M} \delta q(x, p_T^2) H_{1 \perp q}^z (z, k_T^2) \]

\[+ 2S_T \sin (\varphi - \varphi_s) \sum_q e_q^2 \frac{I[(\vec{p}_T \cdot \hat{P}_{h \perp})]}{M} f_{1T}^q (x, k_T^2) D_1^q (z, k_T^2) \]

F.Giordano

EPS-HEP2007
Azimuthal Single Spin Asymmetries

\[A^h_{UT} = \frac{\sigma_{h}^{\uparrow \downarrow} - \sigma_{h}^{\uparrow \uparrow}}{\sigma_{h}^{\uparrow \downarrow} + \sigma_{h}^{\uparrow \uparrow}} \]

\[A^h_{UT} \propto 2|S_T| \sin(\varphi + \varphi_s) \sum_q e_q^2 I\left(\frac{\vec{k}_T \cdot \hat{P}_{h\perp}}{M_h}\right) \delta q(x, p_{T}^2) H_{1,q} (z, k_T^2) \]

\[+ 2|S_T| \sin(\varphi - \varphi_s) \sum_q e_q^2 I\left(\frac{\vec{p}_T \cdot \hat{P}_{h\perp}}{M}\right) f_{1T} (x, k_T^2) D_{1}^q (z, k_T^2) \]
Azimuthal Single Spin Asymmetries

\[A_U^h = \frac{\sigma^{\uparrow\downarrow}_h - \sigma^{\uparrow\uparrow}_h}{\sigma^{\uparrow\downarrow}_h + \sigma^{\uparrow\uparrow}_h} \]

\[A_U^h \propto 2|S_T| \sin(\varphi + \varphi_s) \]

\[+ 2|S_T| \sin(\varphi - \varphi_s) \]

Collins signature

Sivers signature
The Sivers function $f_{1T}^{\perp q}(x, p_T^2)$ describes the correlation between the transverse polarization of the nucleon and the transverse momentum of the quark within the spin-orbit structure of the nucleon.

A non-zero Sivers function requires a non-vanishing orbital angular momentum inside the nucleon.
Collins amplitudes for charged pions

\[2 \langle \sin(\phi + \phi_S) \rangle_{\text{UT}} \]

- Large positive for π^+
- Large negative for π^-
Collins amplitudes for charged pions

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

$2 \langle \sin(\phi + \phi_S) \rangle_{\nu \tau}$

HERMES PRELIMINARY 2002-2005
lepton beam asymmetry, Collins amplitudes
8.1% scale uncertainty

\rightarrow Large positive for π^+

\rightarrow Large negative for π^-

$u \rightarrow \pi^+ H_1 \perp, fav$

$2 \langle \sin(\phi + \phi_S) \rangle_{\nu \tau}$

0.1 0.2 0.3 0.4 0.5 0.6

x

0.2 0.4 0.6 0.8 1

z

0.2 0.4 0.6 0.8 1

$P_{h\perp}$ [GeV]

F.Giordano
Collins amplitudes for charged pions

\[2 \langle \sin(\phi + \phi_S) \rangle_{\text{UT}} \]

- Large positive for π^+
- Large negative for π^-

HERMES PRELIMINARY 2002-2005

lepton beam asymmetry, Collins amplitudes

8.1% scale uncertainty

\[u \rightarrow \pi^+ H_{1,\perp,\text{fav}} \]

\[u \rightarrow \pi^- H_{1,\perp,\text{unfav}} \]
Collins amplitudes for charged pions

\[2 \langle \sin(\phi_+ + \phi_S^\perp) \rangle \]

\[\pi^+ \]

\[\pi^- \]

\(\rightarrow \) Large positive for \(\pi^+ \)

\(\rightarrow \) Large negative for \(\pi^- \)

\[u \rightarrow \pi^+ H_1^\perp, \text{ fav} \]

\[u \rightarrow \pi^- H_1^\perp, \text{ unfav} \]

\[H_{1, \text{unfav}} \approx -H_{1, \text{fav}} \]
Sivers amplitudes for charged pions

→ Large positive for π^+
→ Consistent with zero for π^-
Sivers amplitudes for charged pions

- Large positive for π^+
- Consistent with zero for π^-

Non zero quark orbital angular momentum!
The neutral pions

Collins amplitudes

Sivers amplitudes

Isospin symmetry fulfilled for π-mesons SSA amplitudes!
Collins amplitudes for charged kaons

→ No significant non-zero Collins amplitudes for Kaons
Collins amplitudes for charged kaons

→ No significant non-zero Collins amplitudes for Kaons

→ Collins amplitudes for K^+ compatible with π^+

F.Giordano

EPS-HEP2007
Sivers amplitudes for charged kaons

\rightarrow Large positive for K^+

\rightarrow Consistent with zero for K^-

but….
Sivers amplitudes for charged kaons

- Large positive for K^+
- Consistent with zero for K^-
- K^+ amplitudes are larger than the π^+ amplitudes!
Sivers amplitudes for charged kaons

- Large positive for K^+
- Consistent with zero for K^-
- K^+ amplitudes are larger than the π^+ amplitudes!

Significant sea quark contribution?
Conclusion

• The first evidence of a significant SSA Collins amplitudes for π-mesons
Conclusion

• The first evidence of a significant SSA Collins amplitudes for π-mesons

$$A_{UT}^{\sin(\varphi+\varphi_S)} \propto \delta q(x) \otimes H_{1q}^\perp (z)$$
Conclusion

- The first evidence of a significant SSA Collins amplitudes for π-mesons

\[A_{UT} \sin(\phi + \phi_S) \propto \delta q(x) \otimes H_{1}^{\perp q}(Z) \]

- R. Seidl et al.

- E. S. Ageev et al.

- A. Airapetian et al.
Conclusion

• The first evidence of a significant SSA Collins amplitudes for π-mesons

\[A_{UT} \sin(\phi + \phi_S) \propto \delta q(x) \otimes H_1^\perp q(z) \]

First extraction of transversity!

Conclusion

• The first evidence of a significant SSA Collins amplitudes for π-mesons

• Significant SSA Sivers amplitudes for π^+ and K^+
Conclusion

• The first evidence of a significant SSA Collins amplitudes for π-mesons

• Significant SSA Sivers amplitudes for π^+ and K^+ non-zero quark orbital angular momenta!
Thanks!
Vector meson contributions

![Graph showing vector meson contributions to different particles](image-url)