measurements of the transverse spin structure

Francesca Giordano
INFN sez. Ferrara
Università degli studi di Ferrara

For the HERMES collaboration
HERA MEasurement of Spin

HERA storage ring @ DESY
HERa MEasurement of Spin

Lepton (Electron/Positron) beam (27.6GeV/c) off a transversely polarised hydrogen target

$<P> \sim 72.5 \pm 0.053\%$
Lepton (Electron/Positron) beam (27.6GeV/c) off a transversely polarised hydrogen target \[<P> \sim 72.5 \pm 0.053\%\]
HERMES spectrometer

Resolution: $\Delta p/p \sim 1-2\%$ $\Delta \theta < \sim 0.6 \text{ mrad}$

Electron-hadron separation efficiency $\sim 98-99\%$

Hadron identification with dual-radiator RICH
HERMES spectrometer

Resolution: $\Delta p/p \sim 1-2\%$ $\Delta \theta < \sim 0.6$ mrad

Electron-hadron separation efficiency $\sim 98-99\%$

Hadron identification with dual-radiator RICH
HERMES spectrometer

Aerogel $n=1.03$

C_4F_{10} $n=1.0014$

$p/\Delta p \sim 1-2\%$ $\Delta \theta \sim 0.6$ mrad

Electron-hadron separation efficiency $\sim 98-99\%$

Hadron identification with dual-radiator RICH
Leading twist Distribution Functions

<table>
<thead>
<tr>
<th></th>
<th>quark</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>q</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Δq</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>δq</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- `q`: Quark
- `Δq`: Quark distribution
- `δq`: Quark distribution change

Francesca Giordano

Gordon08
Leading twist Distribution Functions

<table>
<thead>
<tr>
<th>nucleon</th>
<th>quark</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>(q)</td>
</tr>
<tr>
<td>L</td>
<td>(\Delta q)</td>
</tr>
<tr>
<td>T</td>
<td>(\delta q)</td>
</tr>
</tbody>
</table>

Transversity DF
Transversity

As Transversity is a chiral-odd function it can be probed only in conjunction with another chiral-odd function

In Semi Inclusive Deep Inelastic Scattering it is coupled to a chiral-odd Fragmentation Function
Semi Inclusive Deep Inelastic Scattering

1-hadron production

\[\sigma_{UT} \propto S_T \sin(\phi_h + \phi_S) \sum_q e_q^2 \left[\frac{k_T \cdot \hat{P}_{h\perp}}{M} \delta q \cdot H_{q,q}^{\perp} \right] \]

2-hadron production

\[\sigma_{UT} \propto \left| S_T \right| \sin \theta \sin(\phi_{R\perp} + \phi_S) \sum_q e_q^2 \delta q \cdot H_{q,q}^{\perp} \]
Semi Inclusive Deep Inelastic Scattering

1-hadron production

Collins Fragmentation Function

$$\sigma_{UT} \propto S_T \sin(\phi + \phi_S) \sum_q e_q^2 \int \left[\frac{k_T \cdot \hat{P}_{h\perp}}{M} \delta q \cdot H_{i,q} \right]$$
Semi Inclusive Deep Inelastic Scattering

1-hadron production

Collins Fragmentation Function

\[\sigma_{UT} \propto S_T \sin(\phi + \phi_S) \sum_q e_q^2 \int \frac{k_T \cdot \hat{P}_{h\perp}}{M} \delta q \cdot H_{1,q} \]

Collins signature
1-hadron production

\[A_{UT}^h = \frac{\sigma_\downarrow - \sigma_\uparrow}{\sigma_\downarrow + \sigma_\uparrow} \]

\[
A_{UT}^h \propto 2|S_T| \sin(\varphi + \varphi_S) \sum_q e_q^2 \frac{I[\langle \vec{k}_T \cdot \hat{P}_h \rangle]}{M_h} \delta q(x, p_T^2) H_1^\perp q(z, k_T^2) \]

\[
A_{UT}^h \frac{A(y) \sum_q e_q^2 q(x, p_T^2) D_1^q(z, k_T^2)}{A(y) \sum_q e_q^2 q(x, p_T^2) D_1^q(z, k_T^2)}
\]
1-hadron production

\[A^h_{UT} = \frac{\sigma_{h}^{\downarrow} - \sigma_{h}^{\uparrow}}{\sigma_{h}^{\downarrow} + \sigma_{h}^{\uparrow}} \]

\[A^h_{UT} \propto 2|S_T| \sin(\varphi + \varphi_S) \]

Collins signature
1-hadron production

\[A_{UT}^h = \frac{\sigma_\downarrow - \sigma_\uparrow}{\sigma_\downarrow + \sigma_\uparrow} \]

\[A_{UT}^h \propto 2|S_T| \sin(\varphi + \varphi_S) \sum_q e_q^2 I\left(\frac{\vec{k}_T \cdot \hat{P}_{h\perp}}{M_h}\right) \delta q(x, p_T^2) H_1^\perp q(z, k_T^2) \]

\[A_T^h \propto 2|S_T| \sin(\varphi - \varphi_S) \sum_q e_q^2 I\left(\frac{\vec{p}_T \cdot \hat{P}_{h\perp}}{M}\right) f_{1T}^\perp q(x, k_T^2) D_1^q(z, k_T^2) \]

Collins signature
1-hadron production

\[A_{UT}^h = \frac{\sigma_\downarrow^h - \sigma_\uparrow^h}{\sigma_\downarrow^h + \sigma_\uparrow^h} \]

\[A_{UT}^h \propto 2|S_T| \sin(\varphi + \varphi_S) \sum_q e_q^2 I\left(\frac{\vec{k}_T \cdot \hat{P}_{h\perp}}{M_h}\right) \delta q(x, p_T^2) H_{1q}^\perp(z, k_T^2) \]

Collins signature

\[+ 2|S_T| \sin(\varphi - \varphi_S) \sum_q e_q^2 I\left(\frac{\vec{p}_T \cdot \hat{P}_{h\perp}}{M}\right) f_{1T}^{\perp q}(x, k_T^2) D_1^q(z, k_T^2) \]

\[A(y) \sum_q e_q^2 q(x, p_T^2) D_1^q(z, k_T^2) \]
A^h_{UT} = \frac{\sigma_{h}^{\downarrow} - \sigma_{h}^{\uparrow}}{\sigma_{h}^{\downarrow} + \sigma_{h}^{\uparrow}}

A^h_{UT} \propto 2|S_T| \sin(\varphi + \varphi_S)

Collins signature

+ 2|S_T| \sin(\varphi - \varphi_S)

Sivers signature
Leading twist Distribution Functions

<table>
<thead>
<tr>
<th>Nucleon</th>
<th>quark</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Δq</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>δq</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transversity DF
The TMD Distribution Functions

<table>
<thead>
<tr>
<th>Nucleon</th>
<th>Quark</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>q</td>
<td>q</td>
<td>Δq</td>
<td>h₁⊥</td>
</tr>
<tr>
<td>L</td>
<td>Δq</td>
<td>Δq</td>
<td>h₁⊥</td>
<td>h₁⊥</td>
</tr>
<tr>
<td>T</td>
<td>f₁T</td>
<td>g₁T</td>
<td>δq</td>
<td>h₁T</td>
</tr>
</tbody>
</table>

Transversity DF
The TMD Distribution Functions

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>q</td>
<td></td>
<td>h_{1u}</td>
</tr>
<tr>
<td>L</td>
<td>Δq</td>
<td></td>
<td>h_{1L}</td>
</tr>
<tr>
<td>T</td>
<td>f_{1T}</td>
<td>g_{1T}</td>
<td>δq</td>
</tr>
</tbody>
</table>

Sivers DF

Transversity DF
Sivers mechanism

The Sivers function $f_{1T}^{q}(x, p_{T}^{2})$ describes the correlation between the transverse polarization of the nucleon and the transverse momentum of the struck quark \Rightarrow spin-orbit structure of the nucleon

a non-zero Sivers function requires a non-vanishing orbital angular momentum inside the nucleon
Collins amplitudes for pions

\[\langle \sin(\phi + \phi_S) \rangle_{\pi^+} \]
\[\langle \sin(\phi + \phi_S) \rangle_{\pi^-} \]
\[\langle \sin(\phi + \phi_S) \rangle_{\pi^0} \]

- Large positive for π^+
- Large negative for π^-
- Consistent with zero for π^0

\[u \rightarrow \pi^+ H_{1}^\perp, \text{fav} \]
\[u \rightarrow \pi^- H_{1}^\perp, \text{unfav} \]
Collins amplitudes for pions

\[\to \text{Large positive for } \pi^+ \]
\[\to \text{Large negative for } \pi^- \]
\[\to \text{Consistent with zero for } \pi^0 \]

\[u \to \pi^+ \quad H_1^\perp, \text{ fav} \]
\[u \to \pi^- \quad H_1^\perp, \text{ unfav} \]

\[H_{1,\text{unfav}} \approx -H_{1,\text{fav}} \]
Collins amplitudes for pions

→ Large positive for π^+
→ Large negative for π^-
→ Consistent with zero for π^0

$u \to \pi^+ \ H_1^\perp , \text{fav}$
$u \to \pi^- \ H_1^\perp , \text{unfav}$

$H_1^\perp , \text{unfav} \approx -H_1^\perp , \text{fav}$

Isospin symmetry fulfilled for π-meson SSA amplitudes!
Collins amplitudes for charged kaons

→ No significant non-zero

Collins amplitudes for Kaons
Collins amplitudes for charged kaons

→ No significant non-zero Collins amplitudes for Kaons

→ Collins amplitudes for K^+ compatible with π^+
Sivers amplitudes for pions

→ Large positive for π^+
→ Consistent with zero for π^-
→ Positive for π^0

Isospin symmetry fulfilled for π-meson SSA amplitudes!
Sivers amplitudes for pions

→ Large positive for π^+
→ Consistent with zero for π^-
→ Positive for π^0

Non zero quark orbital angular momentum!

Isospin symmetry fulfilled for π-meson SSA amplitudes!
Sivers amplitudes for charged kaons

- Large positive for K^+
- Consistent with zero for K^-
Sivers amplitudes for charged kaons

- Large positive for K^+
- Consistent with zero for K^-
- K^+ amplitudes are larger than the π^+ amplitudes!
Sivers amplitudes for charged kaons

\[2 \langle \sin(\phi - \phi_S) \rangle_{LT} \]

→ Large positive for K^+

→ Consistent with zero for K^-

→ K^+ amplitudes are larger than the π^+ amplitudes!

Suggests a significant sea quark contribution
Semi Inclusive Deep Inelastic Scattering

Independent method to extract δq

Direct product of transversity and Fragmentation function
(no convolution involved!)

BUT:

- poorer statistics
- increased number of variables

$$\sigma_{UT} \propto |S_T| \sin \theta \sin (\phi_{R\perp} + \phi_S) \sum_q e_q^2 \delta q \cdot H_{1,q}$$

Azimuthal dependence

2-hadron production

CMS frame
2-hadron production

\[A_{UT} \equiv \frac{\sigma_{UT}}{\sigma_{UU}} \propto |S_T| \sin(\phi_{R\perp} + \phi_S) \]

\[
\sin \theta \sum_q e_q^2 \delta q(x) \left[\frac{H_{1,q}^{sp} (z, M_{\pi\pi}^2) \cos \theta + H_{1,q}^{sp} (z, M_{\pi\pi}^2) \cos \theta}{D_{1,q}^{pp} (z, M_{\pi\pi}) + (3 \cos^2 \theta - 1) D_{1,q}^{pp} (z, M_{\pi\pi})} \right] \]

The contribution to the Asymmetry is due to interference of different partial waves of the final state h^+h^-.
2-hadron production

\[
A_{UT} \equiv \frac{\sigma_{UT}}{\sigma_{UU}} \propto |S_T| \sin(\phi_{R\perp} + \phi_S)
\]

\[
\sin \theta \sum_q e_q^2 \delta q(x) \left[H_{1,q}^{\xi,sp}(z, M_{\pi\pi}^2) + \cos \theta \ H_{1,q}^{\xi,pp}(z, M_{\pi\pi}^2) \right]
\]

\[
\sum_q e_q^2 q(x) \left[D_{1,q}(z, M_{\pi\pi}) + \cos \theta \ D_{1,q}^{sp}(z, M_{\pi\pi}) + (3 \cos^2 \theta - 1) D_{1,q}^{pp}(z, M_{\pi\pi}) \right]
\]

\[
\theta' \equiv \left| \theta - \frac{\pi}{2} \right| - \frac{\pi}{2}
\]
2-hadron production

\[A_{UT} \equiv \frac{\sigma_{UT}}{\sigma_{UU}} \propto \left| S_T \right| \sin(\phi_R + \phi_S) \]

\[
\sin \theta \sum_q e_q^2 \delta q(x) \left[H_{1,q}^{\xi,sp}(z, M_{\pi\pi}^2) + \cos \theta H_{1,q}^{\xi,pp}(z, M_{\pi\pi}^2) \right]
\]

\[
\sum_q e_q^2 q(x) \left[D_{1,q}(z, M_{\pi\pi}) + \cos \theta D_{1,q}^{sp}(z, M_{\pi\pi}) + (3 \cos^2 \theta - 1) D_{1,q}^{pp}(z, M_{\pi\pi}) \right]
\]

\[
\theta' = \left| \theta - \frac{\pi}{2} \right| - \frac{\pi}{2}
\]

The azimuthal moments are extracted from \(A_{UT} \) using a 2-dimensional \(\chi^2 \) fit

\[
A_{UT} = \sin(\phi_R + \phi_S) \frac{a \sin \theta'}{1 + b (3 \cos^2 \theta' - 1)}
\]
\[A_{UT} \equiv \frac{\sigma_{UT}}{\sigma_{UU}} \propto |S_T| \sin(\phi_{R\perp} + \phi_S) \]

\[
\sin \theta \sum_q e_q^2 \delta q(x) \left[H_{1,q}^{\perp,sp} (z, M_{\pi\pi}^2) + \cos \theta \ H_{1,q}^{\perp,pp} (z, M_{\pi\pi}^2) \right]
\]

\[
\sum_q e_q^2 q(x) \left[D_{1,q} (z, M_{\pi\pi}) + \cos \theta \ D_{1,q}^{sp} (z, M_{\pi\pi}) + (3 \cos^2 \theta - 1) D_{1,q}^{pp} (z, M_{\pi\pi}) \right]
\]

\[
A_{UT} = \sin(\phi_{R\perp} + \phi_S) \frac{a \sin \theta'}{1 + b (3 \cos^2 \theta' - 1)}
\]

Francesca Giordano
2-hadron production

First evidence of a T-odd and chiral-odd dihadron fragmentation function!

(A. Airapetian et al, JHEP 06 (2008) 017)
2-hadron production

POSITIVE ASYMMETRY
in the whole range of $M_{\pi\pi}$-mass

![Graph showing positive asymmetry in the whole range of $M_{\pi\pi}$-mass](image)
2-hadron production

POSITIVE ASYMMETRY
in the whole range of $M_{\pi\pi}$-mass

No evidence of the sign-change at the ρ^0 mass
predicted by Jaffe et al.
(Phys.Rev.Lett.80,(1998))
2-hadron production

POSITIVE ASYMMETRY in the whole range of $M_{\pi\pi}$-mass

Prediction by Bacchetta & Radici consistent with mass dependence

\textit{(Phys. Rev. D 74,(2006))}
The TMD Distribution Functions

<table>
<thead>
<tr>
<th>quark</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boer-Mulders DF</td>
<td>q</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sivers DF

Transversity DF
Unpolarized Semi Inclusive Deep Inelastic Scattering

\[
\frac{d^5 \sigma}{dx \ dy \ dz \ d\phi \ dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \left(1 + \frac{\gamma^2}{2x}\right) \left\{A(y) \ F_{UU,T} + B(y) \ F_{UU,L}\right. \\
+ \left.C(y) \ \cos \phi \ F_{UU}^{\cos \phi} + B(y) \ \cos 2\phi \ F_{UU}^{\cos 2\phi}\right\}
\]
Unpolarized Semi Inclusive Deep Inelastic Scattering

\[
\frac{d^5 \sigma}{dx \ dy \ dz \ d\phi \ dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \left(1 + \frac{\gamma^2}{2x}\right) \{A(y) \ F_{UU,T} + B(y) \ F_{UU,L}\} \\
+ C(y) \ \cos \phi \ F_{UU}^{\cos \phi} + B(y) \ \cos 2\phi \ F_{UU}^{\cos 2\phi}
\]

\[F_{UU}^{\cos 2\phi} = I \left[-\frac{2(\hat{h} \cdot \vec{k}_T)(\hat{h} \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T}{MM_h} \ h_1^\perp H_1^\perp \right]\]
Unpolarized Semi Inclusive Deep Inelastic Scattering

\[
\frac{d^5 \sigma}{dx \, dy \, dz \, d\phi \, dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ A(y) \, F_{UU,T} + B(y) \, F_{UU,L} + C(y) \, \cos \phi \, F_{UU}^{\cos \phi} + B(y) \, \cos 2\phi \, F_{UU}^{\cos 2\phi} \right\}
\]

\[
F_{UU}^{\cos 2\phi} = I \left[-2(\hat{h} \cdot \vec{k}_T)(\hat{h} \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T \right]_{\text{MM}_h}^{(\perp)}
\]

Francesca Giordano

Gordon08

45
Unpolarized Semi Inclusive Deep Inelastic Scattering

Multi-dimensional unfolding procedure in progress!

\[
\frac{d^5 \sigma}{dx \ dy \ dz \ d\phi \ dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \left(1 + \frac{y^2}{2x}\right) \{A(y) \ F_{UU,T} + B(y) \ F_{UU,L} \} + C(y) \ \cos \phi \ F_{UU}^{\cos \phi} + B(y) \ \cos 2\phi \ F_{UU}^{\cos 2\phi}
\]

\[
F_{UU}^{\cos 2\phi} = I \left[-\frac{2(\hat{h} \cdot \vec{k}_T)(\hat{h} \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T}{MM_h} \right]
\]
Conclusion

1-hadron production:

- First evidence of a significant SSA Collins amplitudes for π-mesons

allowed the first extraction of the transversity function!

$\sin(\phi + \phi_S) \propto \delta q(x) \otimes H_{1/q}(z)$

A.Airapetian et al.

E.S.Ageev et al.

R.Seidl et al.
Conclusion

1-hadron production:

- First evidence of a significant SSA Collins amplitudes for π-mesons
 allowed the first extraction of the transversity function!
- Significant SSA Sivers amplitudes for π^+ and K^+
 non-zero quark orbital angular momenta!
Conclusion

1-hadron production:

• First evidence of a significant SSA Collins amplitudes for π-mesons:
 allowed the first extraction of the transversity function!

• Significant SSA Sivers amplitudes for π^+ and K^+:
 non-zero quark orbital angular momenta!

2-hadron production:

• Significative non-zero asymmetries for $\pi^+\pi^-$-pairs :
 independent probe of transversity!
Conclusion

1-hadron production:
• First evidence of a significant SSA Collins amplitudes for π-mesons:
 \[\text{allowed the first extraction of the transversity function!}\]
• Significant SSA Sivers amplitudes for π^+ and K^+:
 \[\text{non-zero quark orbital angular momenta!}\]

2-hadron production:
• Significative non-zero asymmetries for $\pi^+\pi^-$-pairs:
 \[\text{independent probe of transversity!}\]
 \[\text{first evidence for a non-zero chiral-odd interference fragmentation function! (to be measured in e^+e^- machines)}\]
Conclusion

1-hadron production:
- First evidence of a significant SSA Collins amplitudes for π-mesons:
 - allowed the first extraction of the transversity function!
- Significant SSA Sivers amplitudes for π^+ and K^+:
 - non-zero quark orbital angular momenta!

2-hadron production:
- Significant non-zero asymmetries for $\pi^+\pi^-$-pairs:
 - independent probe of transversity!
 - first evidence for a non-zero chiral-odd interference fragmentation function! (to be measured in e^+e^- machines)
- No evidence of a sign change of SSA at ρ^0 mass
Thank you!
Vector meson contamination

\[\text{VM fraction} \]

\[\begin{array}{c}
\text{\pi}^+, \text{\pi}_0, \text{\pi}^- \\
\text{K}^-, \text{K}^+ \\
\end{array} \]

\[\begin{array}{c}
x, z, P_{h\perp} [\text{GeV}] \\
\end{array} \]