Polarized Parton Distributions

Naomi C.R. Makins
University of Illinois at Urbana-Champaign
Euresco Conference, ”Electromagnetic Interactions with Nucleons and Nuclei”
Santorini, Greece
Oct 2 - 7, 2001

\[\frac{1}{2} = \frac{1}{2}\Delta \Sigma + \Delta G + L_z \]

- Some Phenomenological Models
- Quark and Gluon Polarization
- Studies with Polarized \(\Lambda \) Production
- New Structures: Transversity and Friends
Some Phenomenological Models

Non-relativistic Quark Model
Pure valence description of constituent quarks:
\[\Delta u = +4/3, \quad \Delta d = -1/3 \quad \rightarrow \quad \Delta \Sigma = 1 \]

Relativistic Quark Model
Relativistic current quarks with light masses: orbital angular momentum is important, and accounts for the deficit of $\Delta \Sigma$.
\[\Delta \Sigma \approx 0.60 - 0.75, \quad L_q = \frac{1}{2}(1 - \Delta \Sigma) \]

Meson Cloud Models
Quark sea generated by cloud of pseudoscalar mesons.
\[\rightarrow \Delta q_{valence} > 0 \]
\[\rightarrow \Delta q_{sea} < 0, \quad \text{but ...} \]
\[\rightarrow \Delta \overline{q} = 0 \]

Large N_c Limit and the Chiral-Quark Soliton Model
Nucleon = chiral soliton in pion field.
\[\Delta \overline{u} - \Delta \overline{d} \sim N_c^2 \]
\[\Delta \overline{u} + \Delta \overline{d} \sim N_c \]
\[\Rightarrow \text{Light sea quarks have significant polarization, but with } \Delta \overline{u} \sim -\Delta \overline{d}. \]
Rho Meson Cloud

Rho: lightest polarizable meson

\[\rho^\pm, n, \Delta^0, \Delta^{++} \]

Fries, Scäfer, PLB 443 (1998) 40

\[x \left(\Delta \bar{d}(x) - \Delta \bar{u}(x) \right) \]

Miyama, DIS 2001

\[x \left(\Delta \bar{u}(x) - \Delta \bar{d}(x) \right) \]

\[\rightarrow \Delta \bar{u} - \Delta \bar{d} < 0 ! \]

Interference Terms

Apparent discrepancy with \(\chi \)QSM might be resolved by interference terms ...

\[\chi \)QSM Prediction \]

Boreskov, Kaidalov EPJC 10 (1999) 143

Calculation in progress: R. Fries, Ch. Weiss

Large contributions indicated ...
In polarized DIS, using polarized lepton beams and polarized nuclear targets, one probes the polarization of the partons in the nucleon.

\[F_1 = \frac{1}{2} \sum_i e_i^2 q_i \]
\[g_1 = \frac{1}{2} \sum_i e_i^2 \Delta q_i \]
\[\Delta q_i = q_i^+ - q_i^- \]

QCD Fits to $g_1(x, Q^2)$ **at NLO**

\[g_1^{(p(n))} = \frac{1}{9} \left(C_{NS} \otimes \left[\pm \frac{3}{4} \Delta q_3 + \frac{1}{4} \Delta q_8 \right] + C_S \otimes \Delta \Sigma + 2N_f C_g \otimes \Delta g \right) \]

Using g_1 measurements on both proton and neutron (deuterium) targets, one can *in principle* separate these polarized PDF's:

\[\Delta q_3(x, Q^2) = \Delta u - \Delta d, \]
\[\Delta q_8(x, Q^2) = \Delta u + \Delta d - 2\Delta s, \]
\[\Delta \Sigma(x, Q^2) = \Delta u + \Delta d + \Delta s, \]
\[\Delta g(x, Q^2) \]

by exploiting the different Q^2-dependent behaviour of each term.

However ...
World data on F_1^p

World data on g_1^p

December 1998

Preliminary

N.C.R. Makins, Santorini 2001

F_1^p and g_1^p as a function of Q^2.
QCD Fits to $g_1(x, Q^2)$: Challenges

- Precision and range of present polarized data is insufficient to perform a complete separation. Present analyses also use information from hyperon β-decay to constrain non-singlet matrix elements:

 \[a_3 = \Delta q_3 = F + D = 1.2601 \pm 0.0025 \text{ (Bj. sum rule)} \]
 \[a_8 = \Delta q_8 = 3F - D = 0.579 \pm 0.032 \]

 However, expression for a_8 depends on assumption of SU(3)-symmetry among hyperons, which is known to be inexact ...

- **Momentum sum rule** not available. In unpolarized case:

 \[\int dx \, x \left[u(x) + d(x) + s(x) + g(x) \right] = 1 \]

 In polarized case, the unknown angular momentum appears:

 \[\int dx \left[\frac{1}{2} \Delta \Sigma(x) + \Delta g(x) \right] = \frac{1}{2} - L \]

- The net quark polarization $\Delta \Sigma(Q^2)$ is maximally scheme dependent ...

 Connection between measured $\Gamma_1^p = \int dx \, g_1$ and $\Delta \Sigma$ may involve the gluon polarization.

 \[\Rightarrow \text{In the } MS \text{ scheme, } \Delta \Sigma \text{ is not conserved.} \]
 \[\Rightarrow \text{In the AB or JET schemes, } \Delta \Sigma \text{ is conserved:} \]

 \[\Delta \Sigma(Q^2)_{MS} = \Delta \Sigma_{AB(JET)} - \frac{3\alpha_s(Q^2)}{2\pi} \Delta g(Q^2)_{AB(JET)} \]
First moments at $Q_0^2 = 1 \text{ GeV}^2$:

SMC, PRD 58 (1998) 112002

$\Delta \Sigma_{(MS)} = 0.19 \pm 0.05 \pm 0.04$

$\Delta \Sigma_{(AB)} = 0.38 \pm 0.03 \pm 0.03$

$\Delta g_{(AB)} = 0.99 \pm 1.17 \pm 0.42 \pm 1.43$

Sensitivity to SU(3) symmetry breaking

Consider variation of a_8 matrix element from hyperon β-decay, around SU(3)-symmetric value of $3F - D = 0.58$. In JET scheme:

E.Leader, A.Sidorov, D.Stamenov, hep-ph/0004106

<table>
<thead>
<tr>
<th>a_8</th>
<th>χ^2/DOF</th>
<th>$\Delta \Sigma$</th>
<th>Δg</th>
<th>Δs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40</td>
<td>0.82</td>
<td>0.34 (\pm) 0.05</td>
<td>0.13 (\pm) 0.14</td>
<td>-0.02 (\pm) 0.01</td>
</tr>
<tr>
<td>0.58</td>
<td>0.83</td>
<td>0.40 (\pm) 0.04</td>
<td>0.57 (\pm) 0.14</td>
<td>-0.06 (\pm) 0.01</td>
</tr>
<tr>
<td>0.86</td>
<td>0.82</td>
<td>0.40 (\pm) 0.06</td>
<td>0.84 (\pm) 0.30</td>
<td>-0.15 (\pm) 0.02</td>
</tr>
</tbody>
</table>

\Rightarrow Gluon and strange quark polarizations are strongly dependent on the SU(3)-symmetry assumption.
In semi-inclusive DIS a hadron h is detected in coincidence with the scattered lepton

$$\begin{align*}
(E, p) &\rightarrow (\nu, Q^2) \\
\gamma &\rightarrow h
\end{align*}$$

Flavour Tagging

The flavour content of the final state hadrons is related to the flavour of the struck quark through the agency of the **fragmentation functions** $D^h_q(z, Q^2)$. In LO QCD:

$$A^h_1(x, Q^2) = \frac{\int_{z_{\text{min}}}^{1} dz \sum_q e_q^2 \Delta q(x, Q^2) \cdot D^h_q(z, Q^2)}{\int_{z_{\text{min}}}^{1} dz \sum_q e_q^2 q(x, Q^2) \cdot D^h_q(z, Q^2)}$$

Can rewrite in terms of a **purity matrix** :

$$A^h_1(x, z) = \sum_q P^h_q(x, z) \frac{\Delta q(x)}{q(x)}$$

Purities are *spin-independent*, and may be computed via Monte Carlo.
Quark Polarizations at LO

Not yet included ...

- large 2000 data set on Deuterium
- Kaon asymmetries from RICH detector → access to Δs

Hermes Running 1996-2000

- So far: agreement with Gehrmann, Stirling fit to inclusive data (Gluon A, LO)
- Result insensitive to choice of SU(3)-symmetric sea assumption:

\[
\frac{\Delta q_s}{q_s} \equiv \frac{\Delta u_s}{u_s} = \frac{\Delta d_s}{d_s} = \frac{\Delta s}{s} = \frac{\Delta \bar{u}}{\bar{u}} = \frac{\Delta \bar{d}}{\bar{d}} = \frac{\Delta \bar{s}}{\bar{s}}
\]

\[
\Delta q_s \equiv \Delta u_s = \Delta d_s = \Delta s = \Delta \bar{u} = \Delta \bar{d} = \Delta \bar{s}
\]

There are other possibilities ... 2000 data will permit 4- and 5-parameter fits

N.C.R. Makins, Santorini 2001
Global Fit with Semi-Inclusive Data

deFlorian & Sassot 2000

- Assume isospin / charge conjugation symmetry between fragmentation functions:

 \[
 \begin{align*}
 &\text{FAVOURED} \quad D_1^\pi \equiv D_u^{\pi+} = D_u^{\pi-} = D_d^{\pi-} = D_d^{\pi+} \\
 &\text{DISFAVOURED} \quad D_2^\pi \equiv D_u^{\pi-} = D_u^{\pi+} = D_d^{\pi+} = D_d^{\pi-} \\
 &\text{STRANGE} \quad D_s^\pi \equiv D_s^{\pi+} = D_s^{\pi+} = D_s^{\pi-} = D_s^{\pi-}
 \end{align*}
 \]

- Relax \(F, D \) constraints:

 \[
 \Delta q_3 = (F + D)(1 + \epsilon_{\text{Bj}}) \quad \Delta q_8 = (3F - D)(1 + \epsilon_{\text{SU}(3)})
 \]

- Try 3 choices for \(\int \Delta g @ \mu_0 \):

 1. \(\Delta G|_{\mu_0} < 0.4 \)
 2. \(0.4 < \Delta G|_{\mu_0} < 0.7 \)
 3. \(\Delta G|_{\mu_0} > 0.7 \) \(\chi^2 \) same for all 3

- 2 scenarios for light quark sea:

 - "+" scenario: \(\delta u = \delta \bar{d} \) at \(\mu_0 \)
 - "-" scenario: \(\delta u = -\delta \bar{d} \)

<table>
<thead>
<tr>
<th>MOMENTS:</th>
<th>(\Delta \Sigma)</th>
<th>(\Delta G)</th>
<th>(\Delta q_{\text{sea}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>@ (Q^2 = 10)</td>
<td>0.15 – 0.19</td>
<td>0.8 – 1.8</td>
<td>(\Delta s = -0.06 - -0.07)</td>
</tr>
</tbody>
</table>

Conclusions:

- SIDIS data \(\Rightarrow \delta u > 0 \) but \(\delta \bar{d} \) unconstrained

 \(\Rightarrow \) no \(\chi^2 \) change between + and – scenarios

- \(\Delta s < 0 \) indicated, with \(\epsilon_{\text{Bj}} \approx -2\% \) and \(\epsilon_{\text{SU}(3)} \approx -6\% - 7\% \)
Global Fit with Semi-Inclusive Data

Using inclusive data only ...

dean, Sassot, PRD 62 (2000) 094025

Adding semi-inclusive data ...
Quark Polarization: Future

HERMES: data up to 2000

- Pion & Kaon asymmetries
 → Δs, $\Delta \bar{s}$ sensitivity

RHIC-spin: 2002 - ...

- Polarized W production
 → $\Delta \bar{u}$ vs $\Delta \bar{d}$ sensitivity

And further DIS data expected from COMPASS and HERMES Run II

N.C.R. Makins, Santorini 2001
Longitudinal Λ Polarization

Λ polarization accessible via angular distribution of decay p, π

Using polarized beam and unpolarized target, measure longitudinal spin transfer in fragment Λ (from struck q to Λ)

$$ P_\Lambda = P_{\text{beam}} \cdot D(y) \cdot D_{LL'} $$

- Final state Λ polarization
- Struck quark polarization
- Spin transfer

$$ D_{LL'} = \frac{\sum e_q^2 q(x) \Delta D_q^\Lambda(z)}{\sum e_q^2 q(x) D_q^\Lambda(z)} = \sum \frac{\Delta D_q^\Lambda(z)}{D_q^\Lambda(z)} \cdot \omega_q^\Lambda(x) \quad \text{"purity"} $$

Note: In Mulders notation, $\Delta D(z) = G_1(z)$

\rightarrow fragmentation analogue of $g_1(x)$
SPIN TRANSFER \(\vec{q} \to \vec{\Lambda} \)

\[
D_{LL'} = \sum \omega_q(x) \frac{G_{1,q}^\Lambda(z)}{D_{1,q}^\Lambda(z)}
\]

... **IF** \(q \) helicity conserved in fragmentation ...

\[
\Rightarrow \frac{G_{1,q}^\Lambda}{D_{1,q}^\Lambda} \sim \frac{\Delta q^\Lambda}{q^\Lambda}
\]

* i.e. directly related to quark polarization in \(\Lambda \)

SCENARIO 1 **NRQM** : \(\Delta u^\Lambda = \Delta d^\Lambda = 0, \quad \Delta s^\Lambda = 1 \)

SCENARIO 2 **Burkardt & Jaffe** : \(\Delta u^\Lambda = \Delta d^\Lambda \approx -0.2 \)

SCENARIO 3 **"extreme"** : equal polariz\(n \) of flavours \(\Delta u^\Lambda \approx \Delta d^\Lambda \approx \Delta s^\Lambda \)

(e.g. if \(\exists \) sizable contrib\(s \) from decays of heavier hyperons)

deFlorian, Stratmann, Vogelsang, PRD 57 (1988) 5811

N.C.R. Makins, Santorini 2001
Influence of Heavy Hyperon Decays

Heavier Hyperons at E665

Ashery, Lipkin, PLB 469 (1999) 263

LEP Analyses

OPAL and ALEPH data on P_Λ confronted with Monte Carlo models:

- simple SU(3)-symmetric hyperon spin structure
- hyperons not containing primary q unpolarized
- perfect helicity conservation of primary q

\[\begin{array}{c}
\text{OPAL} \\
\hline
-0.1 & 0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1 \\
0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1 & \end{array} \]

\[\begin{array}{c}
\text{ALEPH data} \\
\hline
\text{Jetset (corrected)} \\
\text{Jetset range} \\
\text{Herwig (corrected)} \\
\end{array} \]
Spin Structure as \(x \to 1 \)

- **Gribov-Lipatov relation**

\[q_h(x) \propto D_{q}^{h}(z) \]

endpoint easy to see:

\[z_{A} \to 1 \]

\(A \) carries all energy of struck quark

\[x_{A} \to 1 \]

struck quark carries all energy of \(A \)

1. **Quark-Diquark Model**

\[\psi_{D}(x, k_{\perp}) \sim \exp \left[\frac{1}{8\beta_{D}^{2}} \left(\frac{m_{q}^{2} + k_{\perp}^{2}}{x} + \frac{m_{D}^{2} + k_{\perp}^{2}}{1 - x} \right) \right] \]

... as \(x \to 1 \), VECTOR diq config \(\psi_{D} \) suppressed

\[\frac{d}{u} \to 0 \quad \frac{F_{2}^{n}}{F_{2}^{p}} \to \frac{1}{4} \]

\[\frac{\Delta u}{u} \to 1 \quad \frac{\Delta d}{d} \to -\frac{1}{3} \]

2. **pQCD Model**

\(x \to 1 \) wavefn obtained from "normal" wavefn by exchange of large invariant mass gluons from spectator \(q \)'s ... propagators \(\sim \frac{1}{p^{2}} \) small

\(\to \) small couplings, perturbative methods possible

\[\frac{d}{u} \to \frac{1}{5} \quad \text{thus} \quad \frac{F_{2}^{n}}{F_{2}^{p}} \to \frac{3}{7}, \quad \frac{\Delta q}{q} \to 1 \text{ for } u \text{ and } d \]

For \(A \): Both models predict \(\frac{\Delta q_{A}^{\Lambda}}{q_{A}^{\Lambda}} \to 1 \text{ for all flavours!} \)

N.C.R. Makins, Santorini 2001
Spin Structure as $x \rightarrow 1$

HERMES 1996-2000 PRELIMINARY

- pQCD (Ma)
- Diquark (Ma)
- Diquark, u+d (Boros)
- naive CQM
- u+d+s
- SU(3)$_f$(BJ)

Longitudinal spin transfer D^Λ

Hermes

N.C.R. Makins, Santorini 2001
A complete description of the momentum and spin structure of the nucleon at leading twist requires the third parton distribution \(\delta q(x) \).

Transversity

\[
f_1 = \begin{array}{c}
\text{\hspace{1cm}}
\end{array}
\quad g_{1L} = \begin{array}{c}
\text{\hspace{1cm}}
\end{array}
\quad h_1 = \begin{array}{c}
\text{\hspace{1cm}}
\end{array}
\]

transversity:

\[
h_1(x) \sim \delta q(x)
\]

Helicity Flip Amplitudes

\[
\left\| q \right\| - \left\| 2 \right\| \sim \text{Im}\left\{ \begin{array}{c}
\text{\hspace{1cm}}
\end{array}\right\}
\]

\[
f_1 \sim \begin{array}{c}
\text{\hspace{1cm}}
\end{array}
\quad g_1 \sim \begin{array}{c}
\text{\hspace{1cm}}
\end{array}
\quad h_1 \sim \begin{array}{c}
\text{\hspace{1cm}}
\end{array}
\]

Target not in helicity eigenstate

⇒ **transversity basis**
In Non-Relativistic Case...

In the absence of relativistic effects, boosts and rotations commute:

\[\delta q(x) = \Delta q(x) \]

Tensor Charge of the Nucleon

Fundamental matrix elements:

- Axial charge
 \[\Delta q(\mu) = \langle PS | \bar{\psi} \gamma^\mu \gamma_5 \psi | PS \rangle = \int_0^1 dx \, g_1(x) + \bar{g}_1(x) \]

- Tensor charge
 \[\delta q(\mu) = \langle PS | \bar{\psi} \sigma^{\mu\nu} \psi | PS \rangle = \int_0^1 dx \, h_1(x) - \bar{h}_1(x) \]

\[\Rightarrow \] tensor charge is pure valence object ... promising for comparison with lattice QCD

No Gluons

Angular momentum conservation

\[\Rightarrow \Lambda - \lambda = \Lambda' - \lambda' \]

Different \(Q^2 \) evolution than \(g_1 \).

Chiral Odd

Helicity flip amplitudes occur only at \(\mathcal{O}(m_q/Q) \) in inclusive DIS...

but they are observable in e.g. semi-inclusive reactions
From perturbative QCD considerations, it was expected that transverse spin effects would be \textbf{small}: $\sim \frac{m_q}{\sqrt{s}}$...

$$A_N(p^\uparrow p \rightarrow \pi X) \sim \int h_1(x_a)f_1(x_b)D_1^\pi(x_c) \hat{a}_{ab} \frac{d\sigma}{dt}(a^\uparrow b \rightarrow cd)$$

with helicity flip in subprocess asymmetry:

$$\hat{a}_{ab} = \frac{d\sigma(a^\uparrow b \rightarrow cd) - d\sigma(a^\downarrow b \rightarrow cd)}{d\sigma(a^\uparrow b \rightarrow cd) + d\sigma(a^\downarrow b \rightarrow cd)}$$

\textbf{No large effects possible:}

- q helicity flip vanishes in the limit $m_q = 0$
- \hat{a}_{ab} arises from \textbf{interference} between a non-flip and a single-flip helicity amplitude ... and no imaginary phases possible at Born level.
Sivers Effect

Chou-Yang Model

Valence quarks = relativistic Dirac particles in central potential

- relativistic quarks in eigenstates of J, which is shared between L and S
- symmetrized wavefunction
 \[\Delta u = +4/3, \Delta d = -1/3 \]
- forward π^+ produced directly from orbiting u_v quark at front surface of beam proton

Sivers Idea

Consider dependence of parton densities on intrinsic k_T:

\[
A_N \sim \int f_{1T}^\perp(x_a, k_{Ta}) f_1(x_b, k_{Tb}) D_{1}^\pi(x_c, k_{Tc}) \frac{d\sigma}{dt}(ab \to cd)
\]

- Unknown soft dynamics absorbed into f_{1T}^\perp ... hard subprocess merely transmits the asymmetry to large transverse momentum by kinematics.
- Intrinsic k_T introduces hadronic scale M into the problem: transverse effects of order p_T/M (not just p_T/s)

New structure function: $f_{1T}^\perp(x, k_T)$

- disappears on integration over k_T
- odd under time reversal ... requires initial state interactions between colliding hadrons
Collins Effect and Transversity

There is another possible explanation ... the E704 single-spin asymmetry could be due to:

- **Sivers Effect:**
 - T-odd distribution function f_{1T}^{n}

- **Collins Effect:**
 - T-odd fragmentation function H_{1}^{1}

Collins Effect

In this case, $A_{N} \sim h_{1}(x) H_{1}^{1}(z)$

⇒ access to transversity!

How to separate?

Single Spin Asymmetries in DIS
The Collins Effect in the String Fragmentation Model

- **chiral-odd** like $h_1(x)$... chiral-odd distribution and fragmentation functions appear in pairs in DIS cross-section
- **T-odd** ... one T-odd function required to produce single-spin asymmetry in semi-inclusive DIS

The Collins function is indicative of phase coherence in fragmentation
⇒ generate interference between non-flip and single-flip amplitudes
T-Odd Functions

Spin Spin Azimuthal Asymmetry: \(\sigma \sim \vec{S}_1 \cdot (\vec{p}_1 \times \vec{p}_2) \sim \sin \phi \)

\[\negrightarrow \text{ODD under time reversal} \]

\[\phi = -\pi/2 \quad \text{DOWN} \]
\[\phi = +\pi/2 \quad \text{UP} \]

\[\hat{T} \text{ transforms } \phi \text{ to } -\phi \]

But elementary QCD processes are \(\hat{T} \)-invariant ...

can build \(\hat{T} \)-odd term in xsec \(\sim \sin \phi \) from **interference**

TOY EXAMPLE

Any amplitude \(A = \langle f | \hat{H} | i \rangle \) for \(\hat{T} \)-invariant \(\hat{H} \) satisfies
\[A^*(-\phi) = A(\phi) \]

① No spin flip \[A_1 = \langle S_1 = \uparrow | \hat{H} | \phi, S_2 = \uparrow \rangle \sim e^{i\phi} \]

② Spin flip \[A_2 = \langle S_1 = \uparrow | \hat{H} | \phi, S_2 = \downarrow \rangle \sim 1 \]

... suppose \(\exists \text{PHASE SHIFT} e^{i\delta} \text{ between amplitudes} ... \)

\[\sigma \sim |A_1 + e^{i\delta} A_2|^2 = 2 + 2\text{Re}(e^{i\delta} A_1^* A_2) = 2 + \cos \delta \cos \phi - \sin \delta \sin \phi \]

- \(e^{i\delta} \Rightarrow \text{scattering phase shift, from final / initial state interactions} \)
- ... but in high energy \(\pi \) production, surely **many** amplitudes contribute

significant \(\hat{T} \)-odd frag\(^n \) function \[\text{phase coherence in fragmentation!} \]

N.C.R. Makins, Santorini 2001
SMC: Azimuthal Asymmetry

\[A_N = \frac{1}{P_T f D_{NN}} \frac{1}{\langle \sin \phi_c \rangle} \frac{N(\phi_c) - N(\phi_c + \pi)}{N(\phi_c) + N(\phi_c + \pi)} \]

\[d\sigma \sim (1 + A_N \sin \phi_c) d\phi_c \]

Using transversely polarized target
Spin-Azimuthal Asymmetry

Longitudinal target spin asymmetry:

\[A(\phi) = \frac{1}{P} \frac{N^+(\phi) - N^-(\phi)}{N^+(\phi) + N^-(\phi)} \]

Effect observable even with longitudinally polarized target
⇒ good promise for future transverse target program
at HERMES

N.C.R. Makins, Santorini 2001
\[A_{UL}^{\sin \phi} \] Behaviour

\[A_{UL}^{\sin \phi} = \langle \sin \phi \rangle \] moment of longitudinal target asymmetry
→ related to product of \(h_1(x) \) and \(H_1^+(z) \)

Red squares (blue circles) = \(\pi^+ (\pi^-) \).

Original Predictions of Collins

- Effect should peak at \(x \approx 0.3 \) (valence region)
- Effect should be stronger for \(\pi^+ \) than \(\pi^- \) (\(u \)-quark dominance)
- Effect should grow with \(p_T \) and peak at \(p_T \approx 1 \text{ GeV/c} \)

Future Measurements of Transversity

This effect is essentially a transverse one ... the fact that it is already visible using a longitudinally polarized target ⇒ good promise for future transverse target programs, e.g. at HERMES and COMPASS.
Azimuthal Asymmetry in the Chiral Quark Soliton Model

Charged Pion Asymmetry A_{UL}

New: Neutral Pion Asymmetry

Calculation:

- only favoured fragmentation functions $D_{1/a}/\pi$ and $H_{1/La}/\pi$
- $\langle H_{1/L}^z(z)/z \rangle \approx \langle H_{1/L}^z(z) \rangle/\langle z \rangle$ with $\langle z \rangle = 0.41$
- $\langle P_{h\perp} \rangle \approx \langle p_T \rangle \approx 0.4$ GeV
- GRV parametrization for $f_1^a(x)$
- h_1 calculated in chiral soliton model

N.C.R. Makins, Santorini 2001
Size of Collins Function

- **DELPHI**

 \[
 \pi \xrightarrow{Z^0} \pi
 \]

 Transverse \(q, \bar{q}\) polarization small but ANTI-CORRELATED (@ \(\sim\) 50 % level)

 \[
 \left| \frac{H_1^\perp}{D_1} \right| = 6.3 \pm 1.7 \%
 \]

- **HERMES / SMC**

 Efremov et al., hep-ph/0108213

 Fit experimental data for \(H_1^\perp\), taking \(h_1(x)\) from Chiral Quark Soliton Model (\(\chi\)QSM)

 \[
 \left| \frac{H_1^\perp}{D_1} \right| = \begin{cases}
 6.1 \pm 0.9 \pm 0.8 \% & \text{(HERMES)} \\
 10 \pm 5 \% & \text{(SMC)}
 \end{cases}
 \]

- **E704**

 Boglione & Mulders, PRD 60 (1999) 054007

 Fit experimental data, assuming ONLY Collins effect contributes

 \[
 \left| \frac{H_1^\perp}{D_1} \right| = 7.6 \%
 \]

There seems to be general agreement
(although results depend on \(z\)-range over which averaging performed)

What about the Sivers Function?

- Note: fit to E704 assuming ONLY Sivers effect contributes:

 \[
 \left| \frac{f_{1T}^\perp}{f_1} \right| = 8.3 \% \quad \text{("max" size)}
 \]

- **MORE DATA NEEDED** ... e.g. DIS w transverse target

 \[A_{UT} \text{ has term } \sim f_{1T}^\perp D_1 \sin(\phi_h^l + \phi_s^l)\]

N.C.R. Makins, Santorini 2001
Summary

Quark & Gluon Polarization

- **Semi-inclusive** data critical to constraining $\Delta \bar{u}$, $\Delta \bar{d}$
 - \rightarrow some indication already that $\Delta \bar{u} > 0$
 - \rightarrow wait: HERMES analysis of 2000 data ... new data
 upcoming from RHICspin, COMPASS, HERMES Run II

- **Gluon polarization** not constrained by g_1 data
 - \rightarrow need direct meas. of photon-gluon-fusion process
 wait: RHICspin, COMPASS, SLAC, HERMES Run II

- Longitudinal spin transfer in Λ production high z may provide
 information on $\Delta q^\Lambda / q^\Lambda$ as $x \rightarrow 1$

New Structures

- **Transversity**: first data on h_1 in rather good agreement with models

- First clear evidence of T-odd **Collins Fragmentation Func**t
 \rightarrow strong phase coherence in fragmentation?

- More data required to constrain **Sivers Function** f_{1T}^{\perp}
 \rightarrow sensitive to orbital angular momentum?