The HERMES Recoil Detector

Inti Lehmann
University of Glasgow
for the HERMES Collaboration

EuNPC Bochum, 17 March 2009
Nucleon Structure

• Proton spin

\[\frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_q + J_g \]

• \(\Delta \Sigma \) : quark spin
 ▪ about 1/3 (HERMES, ...)

• \(L_q \) : quark angular momentum
 ▪ unknown

• \(J_g \) : gluon total angular momentum
 ▪ unknown

• How is the spin distributed?
Access Nucleon Structure

Deeply Virtual Compton Scattering (DVCS)

Ji Sum Rule

\[J_q = \frac{1}{2} \int_{-1}^{1} x \, dx \left[H_q + E_q \right] \]

Generalised Parton Distributions (GPDs)

- Functions of 3 variables
 - parton momentum fraction \(x \)
 - skewedness \(\xi \)
 - \(p \) momentum transfer \(t \)

Final state: \(e, \gamma, p \)
HERMES at HERA, DESY

- Long. polarized electron/positron beams 27.6 GeV
HERMES at HERA, DESY

Magnetic spectrometer with transv. and long. polarized targets
Measurement of Recoiling Proton

- Remove background from associated BH/DVCS with intermediate Δ-production and from semi-inclusive processes
 - Reduction from 17% to about 1%
- Improve t-resolution at small t (with Si-detector)
- High luminosity with unpolarised targets
HERMES with Recoil Detector

Recoil Proton

17/03/2009 EuNPC I. Lehmann, HERMES Recoil Detector
HERMES Recoil Detector

- 2π magnetic spectrometer surrounding target
- Unpolarised gas targets
 - H, D
- Challenging conditions
 - Inside magnet
 - Close to e+/e-beam
Silicon Strip Detector

- **Purpose**
 - detect 125-500 MeV/c protons
 - Momentum and track reconstruction
 - Particle Identification

- **16 silicon sensors**:
 - 10 x 10 cm² area
 - 300um thickness
 - double-sided strips

- **Arranged in 2 layers**

- **Challenge**
 - Detector + electronics close to e beam
 - Inside vacuum
Scintillating Fibre Detector

- **Purpose**
 - Momentum and track reconstruction
 - Particle Identification
 - **Range**: $p_p = 250$-1200 MeV/c

- **2 barrels with each**:
 - 2 layers parallel with respect to the beam
 - 2 layers 10° stereo angle
 - 6910 fibres

- **Readout**:
 - 64 channels PMT (Hamamatsu)
 - totally 5120 channels
Photon Detector

• Purposes
 - Photon detection from π^0 decays ($\Delta^+ \rightarrow p \pi^0 \rightarrow p \gamma \gamma$)
 - Particle Identification
 - Background reduction

• 3 layers of tungsten and scintillator
 - 1st layer parallel to beam
 - 2nd layer +45\degree resp. to beam
 - 3rd layer -45\degree resp. to beam
Performance

• Examples

Energy deposit in silicon detectors on a deuterium target

Efficiency for protons (e.g. 1 side, sensor)

Residuals show precise alignment
Performance

- Particle identification
 - momentum = curvature
 - ΔE in each layer (independent)
Event Selection

- First comparison
 - Traditional criteria adding Recoil information
Summary

• About 40M DIS events on hydrogen collected in 2006/2007
 ▪ More than in 10 years before (without Recoil)

• Detector status
 ▪ Alignment and calibration finished
 ▪ Detailed response studies ongoing
 ▪ First physics analysis starting
 • Preliminary results promising
 • See HERMES talks on Thursday: HK 70

• Results expected soon