Exclusive Vector Meson Production at HERMES

Symmetries and Spin 2005, Prague, Czech Republic.

Jeroen Dreschler

on behalf of the HERMES collaboration

Nationaal Instituut voor Kernfysica en Hoge-Energiefysica (NIKHEF)
Outline

- Introduction
- $\sigma_L - \sigma_T$ separation
- Measured cross sections
- Transverse target spin asymmetry in exclusive ρ^0 production
- Conclusion
GPDs & Exclusive Meson Production

- Factorization of LO amplitudes
 - For meson production only proven for γ^*_L
 - GPDs parametrize lower non-perturbative part
GPDs & Exclusive Meson Production

- Factorization of LO amplitudes
 - For meson production only proven for γ_L^*
 - GPDs parametrize lower non pertubative part
- Leading twist Generalized Parton Distributions
 - For each quark flavour q: $H^q, E^q, \tilde{H}^q, \tilde{E}^q$
 - Vector mesons production $\Rightarrow H^q, E^q$
 - Pseudoscalar meson production $\Rightarrow \tilde{H}^q, \tilde{E}^q$
GPDs & Exclusive Meson Production

Factorization of LO amplitudes
- For meson production only proven for γ^*_L
- GPDs parametrize lower non pertubative part

Leading twist Generalized Parton Distributions
- For each quark flavour q: $H^q, E^q, \tilde{H}^q, \tilde{E}^q$
- Vector mesons production $\Rightarrow H^q, E^q$
- Pseudoscalar meson production $\Rightarrow \tilde{H}^q, \tilde{E}^q$

New information about quark structure in nucleon
- Quark (orbital) angular momentum:

$$J^q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} x [H^q + E^q] dx$$

$$L^q = J^q - \frac{1}{2} \Delta \Sigma$$
Extraction of Exclusive VM Sample

- Detected in HERMES spectrometer
- Scattered lepton
- Vector meson decay products

\[M_{2h} = \sqrt{(P_{h+} + P_{h-})^2} \]

\[
\begin{align*}
V & \rightarrow h^+ h^- \\
\rho^0 & \rightarrow \pi^+ \pi^- \\
\varphi & \rightarrow K^+ K^-
\end{align*}
\]
Extraction of Exclusive VM Sample

Detected in HERMES spectrometer:
- Scattered lepton
- Vector meson decay products

\[M_{2h} = \sqrt{(P_{h+} + P_{h-})^2} \]

![Diagram showing leptons and mesons](image)
Extraction of Exclusive VM Sample

- Detected in HERMES spectrometer:
 - Scattered lepton
 - Vector meson decay products
 \[M_{2h} = \sqrt{(P_{h+} + P_{h-})^2} \]

- Recoil target is not (yet) detected

- Calculate missing mass \(M_X \)
 \[M_X = \sqrt{(p + q - P_V)^2} \]
Detected in HERMES spectrometer:
- Scattered lepton
- Vector meson decay products
 \[M_{2h} = \sqrt{(P_{h+} + P_{h-})^2} \]
- Recoil target is not (yet) detected
- Calculate missing mass \(M_X \)
 \[M_X = \sqrt{(p + q - P_V)^2} \]
- \(\Delta E \) should be peaked around zero
 \[\Delta E = \frac{M_X^2 - M_p^2}{2M_p} \]
Angular Distributions of Decay Products

- $\sigma_L - \sigma_T$ separation possible from $W(\cos \theta, \phi, \Phi)$
- $W(\cos \theta, \phi, \Phi)$ can be described in terms of 23 SDMEs
- $r_{00}^{04} \Rightarrow W(\cos \theta)$

Photon-Nucleon CMS

lepton scattering plane
ρ^0 production plane
ρ^0 decay plane

ρ^0 Rest Frame
Angular Distributions of Decay Products

\(\sigma_L - \sigma_T \) separation possible from \(W(\cos \theta, \phi, \Phi) \)

\(W(\cos \theta, \phi, \Phi) \) can be described in terms of 23 SDMEs

\[r_{00}^{04} \Rightarrow W(\cos \theta) \]

Assuming s-channel helicity conservation:

\[R = \frac{\sigma_L}{\sigma_T} = \frac{1}{c} \frac{r_{00}^{04}}{1-r_{00}^{04}} \]

Diffractive \(\rho^0 \) Electroproduction \((^1H)\)
Angular Distributions of Decay Products

- $\sigma_L - \sigma_T$ separation possible from $W(\cos \theta, \phi, \Phi)$
- $W(\cos \theta, \phi, \Phi)$ can be described in terms of 23 SDMEs
- $r_{00}^{04} \Rightarrow W(\cos \theta)$

Assuming s-channel helicity conservation:

- $R = \frac{\sigma_L}{\sigma_T} = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$

- $\sigma_L - \sigma_T$ separation possible
 - $\sigma_L = \frac{R}{1 + \epsilon R} \sigma \gamma^* p \rightarrow V p$
 - Allows comparison with GPD based models
Cross Section Measurements

Is exclusive ρ^0 production dominated by quark exchange?

![Graph showing cross section measurements for $\rho^0(p)$ production](graph.png)

- **VGG calculations**
- **VGG, two-quark exchange**
- **VGG, two-gluon exchange**

HERMES Experiment - E665
Cross Section Measurements

- Is exclusive ρ^0 production dominated by quark exchange?
- Exclusive ϕ meson produced via gluon exchange

![Graphs showing cross-section measurements for ρ^0 and ϕ production](hermes-preliminary.jpg)

- VGG calculations
- VGG, two-quark exchange
- VGG, two-gluon exchange

J. Dreschler, Symmetries and Spin 2005, Prague – p.14/24
Cross Section ratio $\sigma_\phi / \sigma_{\rho^0}$

- Estimate contributions quark / gluon exchange for exclusive ρ^0 production

![Diagram](image-url)
Cross Section ratio $\frac{\sigma_\phi}{\sigma_{\rho^0}}$

Estimate contributions quark / gluon exchange for exclusive ρ^0 production

\[\frac{\sigma_\phi}{\sigma_{\rho^0}} \approx \frac{2}{9} \frac{|g_{\rho^0}|^2}{|g_{\rho^0}|^2 + 2|q_{\rho^0}| |g_{\rho^0}| \cos \alpha + |q_{\rho^0}|^2} \]

\[\Rightarrow \quad 0.38 \leq |q_{\rho^0}/g_{\rho^0}| \leq 1.5 \]

Diehl, Vinnikov, 2005
Cross Section ratio $\sigma_\phi / \sigma_{\rho^0}$

- Estimate contributions quark / gluon exchange for exclusive ρ^0 production
- Possibly substantial contribution from gluon exchange
- New GPD model based predictions
 - 15-20% pure quark exchange contribution to cross section
Transverse Target Spin Asymmetry

- Transverse target spin azimuthal asymmetry
 - $A_{theory} \propto EH$
 - Sensitivity to J^q
- Measurements of A_{UT} in exclusive ρ^0 production
 - $A_{theory} = -\frac{2}{\pi}A_{UT} \sin(\phi - \phi_s)$

Goeke, Polyakov, Vanderhaeghen, 1999
Transverse Target Spin Asymmetry

Experimentally:

\[A_{UT}(\phi, \phi_S) = \frac{1}{|P_t|} \frac{N^\uparrow(\phi, \phi_S) - N^\downarrow(\phi, \phi_S)}{N^\uparrow(\phi, \phi_S) + N^\downarrow(\phi, \phi_S)} \]
Transverse Target Spin Asymmetry

Exponentially:

\[A_{UT}(\phi, \phi_S) = \frac{1}{|P_t|} \frac{N^\uparrow(\phi, \phi_S) - N^\downarrow(\phi, \phi_S)}{N^\uparrow(\phi, \phi_S) + N^\downarrow(\phi, \phi_S)} \]

\[A_{UT}(\phi - \phi_s) = A_{UT}^{\sin(\phi - \phi_s)} \sin(\phi - \phi_s) \]

\[A_{UT}^{\sin(\phi - \phi_s)} = 0.046 \pm 0.037 \]

\[\langle x \rangle = 0.09 \quad \langle Q^2 \rangle = 2.0 \text{ GeV}^2 \quad \langle -t' \rangle = 0.13 \text{ GeV}^2 \]
Transverse Target Spin Asymmetry

Kinematic dependence of $A_T^\sin(\phi - \phi_s)$
Transverse Target Spin Asymmetry

- Kinematic dependence of $A^\sin(\phi - \phi_s)_{UT}$
- Results in agreement with theoretical predictions

![Graph](chart.png)

Hermes Preliminary

- $Q^2 = 2\text{ GeV}^2$
- $-t' = 0.13\text{ GeV}^2$

J. Dreschler, Symmetries and Spin 2005, Prague – p.22/24
Kinematic dependence of $A_{UT}^{\sin(\phi - \phi_s)}$

- Results in agreement with theoretical predictions
- To be done:
 - Include 2005 data (statistics increase factor 2)
Conclusion

Summary

- Cross sections have been measured and compared to GPD based predictions
- First (preliminary) results shown for A_{UT} in exclusive ρ^0 production

Outlook

- More data for exclusive ϕ and ρ^0 production to be analysed
- New data with a transversely polarized target to come
- $\sigma_L - \sigma_T$ separation for A_{UT} in exclusive ρ^0 production...