Measurement of the structure functions F^p_{2} and F^d_{2} at

Lara De Nardo
For the
HERMES COLLABORATION
DIS cross section and structure functions

\[
\frac{d^2 \sigma}{dx \ dQ^2} = \frac{4\pi \alpha_{em}^2}{Q^4} \frac{F_2(x, Q^2)}{x} \left[1 - y - \frac{Q^2}{4E^2} + \frac{y^2 + Q^2/E^2}{2(1 + R(x, Q^2))} \right]
\]
Why measuring inclusive DIS cross sections at HERMES?

HERMES (1996-2005)
30M proton + 28M deuteron
~450pb$^{-1}$

eg. Compared to NMC
3M proton + 6M deuteron

\[\int \frac{dx}{x} \left(F_2^p - F_2^d \right) \]
Gottfried Sum

\[d_v / u_v \]
Valence Quark Ratio

Explore the transition between perturbative and non-perturbative QCD
The HERMES Spectrometer

Reconstruction: $\delta p/p < 2\%$, $\delta \theta < 1$ mrad

Internal gas targets: unpol: H, D, He, N, Ne, Kr, Xe, \rightarrow He, \rightarrow H, \rightarrow D, \rightarrow H

Particle ID: TRD, Preshower, Calorimeter, RICH
Kinematic plane

- $0.006 < x < 0.9$
- $0.1 < y < 0.85$
- $0.2 \text{ GeV}^2 < Q^2 < 20 \text{ GeV}^2$
- $W^2 > 5 \text{ GeV}^2$

- 19 x bins
- Up to 6 Q^2 bins
- Total: 81 bins

- Traditional DIS region ($Q^2>1\text{GeV}^2$) can be easily separated
Extraction of cross sections

DIS YIELDS

UNFOLDING

DIS BORN CROSS SECTION

- Particle ID efficiencies
- Trigger efficiencies
- Charge symmetric background subtraction

- Geometric acceptance
- Detector smearing
- Radiative corrections
- Tracking related effects
Luminosity

Elastic reference process: interaction of beam with shell electrons

- Electron beam: Möller scattering $e^- e^- \rightarrow e^- e^-$
- Positron beam: Bhabha scattering $e^+ e^- \rightarrow e^+ e^-$
 annihilation $e^+ e^- \rightarrow 2\gamma$

$$L = \int \mathcal{L} \, dt = (R_{LR} - \Delta t \cdot R_L \cdot R_R) \cdot C_{Lumi} \cdot \frac{A}{Z} \cdot l \cdot \Delta t_{meas}$$

Normalization uncertainty 6.4% (proton) and 6.6% (deuteron)
Particle ID efficiencies

Leptons identified by $\text{PID}>\text{PID}_{\text{cut}}$ with $\text{PID}_{\text{cut}}=0$

Hadron contamination:
fractional contribution of hadrons above PID_{cut}

Lepton identification efficiency:
fraction of leptons selected with $\text{PID}>\text{PID}_{\text{cut}}$

$$N_{\text{corr}} = N_{\text{uncorr}} \cdot \frac{1 - C(\text{PID}_{\text{cut}})}{E(\text{PID}_{\text{cut}})}$$

Correction $\sim 1\%$
Trigger efficiencies

\[\varepsilon(TR) = \varepsilon(H0) \cdot \varepsilon(H1) \cdot \varepsilon(PRE) \cdot \varepsilon(CALO) \]

Dependence on time (voltage changes, radiation...), momentum, angle:
Efficiencies are calculated separately for Top and Bottom, data production, bin

Example: H0 efficiency for 2000 data

\[N_{corr} = N_{uncorr} \cdot \frac{1}{\varepsilon(TR)} \]
Charge symmetric background

- meson Dalitz decay $\pi^0 \rightarrow \gamma e^+ e^-$
- photon conversion $\gamma \rightarrow e^+ e^-$

These e^+ and e^- originate from secondary processes
- Lower momenta (high y) concentration
- Correction applied by counting the number of events with charge opposite of the beam

$$N_{corr}^{+, -} = N_{uncorr}^{+, -} - N_{cs}^{-, +}$$
Experimental cross section

Yields are corrected for
- Trigger efficiencies
- PID efficiencies
- Charge symmetric background

\[\sigma^{Exp}(j) = \frac{N_{corr}(j)}{L} \]
Unfolding Kinematic bin Migration

\[S(i, j) = \frac{n(i, j)}{n_{\text{Born}}(j)} \]

\[\sigma_{\text{Born}}(i) = S'^{-1}(i, j) \left[\sigma_{\text{Exp}}(j) - S(j, 0) \sigma_{\text{Born}}(0) \right] \]

4π BORN MC
- Simulation of true cross section
- No radiative effects
- No tracking

FULL DETECTOR MC
- Detector material (GEANT4)
- Radiative effects
- Tracking

(Light arrows indicating (Same Luminosity))

Background term
Detection efficiencies for high multiplicity radiative events

- The incoming *electron* can radiate a *high energy photon* and then scatter elastically with the nucleon.

Photon:
- Small scattering angle
- Large probability of hitting the beam pipe, causing a shower and saturating the wire chambers

- These unreconstructed events are included in the smearing matrix
- Efficiencies extracted from MC
Main source of systematics: Misalignment

- IDEAL situation: Perfect alignment of beam and spectrometer
- In practice:
 - Top and bottom parts of the detector are displaced
 - Beam position differs from nominal position

- Simulation of misalignment done in MonteCarlo
- Difference between measured and simulated cross section used as systematic uncertainty (~7%)
Results

- Agreement in the region of overlap $0.03 < x < 0.7$, $1.1 \text{ GeV}^2 < Q^2 < 13 \text{ GeV}^2$
- Data in a so far unexplored region $0.007 < x < 0.05$, $0.3 \text{ GeV}^2 < Q^2 < 0.9 \text{ GeV}^2$

Normalization uncertainty: 6.4% (P), 6.6% (D)
HERMES data agree with previous parameterization from SMC and are included in the fit GD10.
• HERMES data agree with previous data in the same kinematic range
The Parameterization GD10-P,D

$$\sigma_{L+T}(\gamma^*p) = \frac{4\pi\alpha_{em}}{Q^2(1-x)} \frac{Q^2 + 4M^2x^2}{Q^2} \cdot F_2$$

 • \(\chi^2\) includes point-by-point statistical and systematic uncertainties
 • Consistency with respect to \(R=\sigma_T/\sigma_L\)
 • Experimental normalizations are fitted
 • Calculation of statistical error bands

With the inclusion of HERMES data:
 • Parameter uncertainties decrease by up to 30% (proton) and 40% (deuteron)
 • \(\chi^2\) changes from 0.90 to 0.92 (proton) and 0.86 to 0.90 (deuteron)
Cross section $\sigma_{L+T}^{p,d}$
Cross section ratio σ^p / σ^d

- Determined on a year-by-year basis and then averaged
- Reduction of:
 - Normalization uncertainty
 - many systematic effects (misalignment, PID...)

The remaining 1.4% normalization uncertainty comes from variations of beam conditions within each data set.

HERMES data agree with data from SLAC (similar Q^2) and data at higher Q^2 from NMC. BCDMS data are known to disagree with the other data sets.
Conclusions

HERMES has measured the structure functions F_2^p and F_2^d.

- Data points agree with previous data in the data-overlap region.
- Add new data in a previously unexplored region.

Fits to $F_2^{p,d}$ world data are performed.

- Clear improvement of parameter uncertainties.

Proton and deuteron are combined to obtain σ^p/σ^d.

- Large cancellation of syst. uncertainties on the two targets.
PID efficiencies and contaminations

Dependence on momentum (eff.’s decrease at higher p), production, bin
Eff > 94%, C < 2%