HERMES Results on Hard Exclusive Reactions

GPD Workshop Trento, June 9-13, 2008

Wolf-Dieter Nowak
DESY, 15738 Zeuthen, Germany

Wolf-Dieter.Nowak@desy.de
Table of Contents

- 3-dimensional picture of the nucleon
- Proton spin budget in a nutshell
- Deeply Virtual Compton Scattering (DVCS)
- HERMES spectrometer & exclusive event selection
- Beam-charge and beam-spin asymmetries
- Longitudinal target-spin asymmetries
- Transverse target-spin asymmetries
- Model-dependent constraints on J_u vs. J_d
- DVCS on Nuclear targets: Beam-charge & beam spin asymmetries
- Exclusive π^+ cross section and transverse target-spin asymmetry
- Exclusive ρ^0 transverse target-spin asymmetry
- Summary and Outlook

(Not covered: Determination of ρ and ϕ spin-density matrix elements)
3-dimensional Picture of the Proton

Nucleon momentum in Infinite Momentum Frame: \((p^{\gamma*} + p_{nucl})_z \to \infty\)

- Form factor
- Parton density
- Generalized parton distribution at \(\eta=0\)

Nucleon’s transv. charge distribution given by 2-dim. Fourier transform of **Form Factor**:

\(\Rightarrow\) Parton’s transverse localization \(b_\perp\)

Probability density to find partons of given long. mom. fraction \(x\) at resol. scale \(1/Q^2\) (no transv. inform.)

\(\Rightarrow\) Parton’s longitudinal momentum distribution function (PDF) \(f(x)\)

Generalized Parton Distrib. (GPDs) probe simultaneously transverse localization \(b_\perp\) for a given longitudinal momentum fraction \(x\).

2nd moment by Ji relation:

\[J_{q,g} = \frac{1}{2} \lim_{t \to 0} \int x \, dx \left[H_{q,g}(x, \xi, t) + E_{q,g}(x, \xi, t) \right] \]

Wolf-Dieter Nowak, GPD Workshop Trento, June 9, 2008
Proton Spin Budget in a Nutshell

NO unique & gauge-invar. decomposition of the nucleon spin [R.L.Jaffe, X.Ji]:

(A) ‘GPD-based’:
\[
\frac{1}{2} = J_q + J_g = \frac{1}{2} \Delta \Sigma + L_q + \Delta g + L_g
\]

- Total angular momenta of quarks (J_q) and gluons (J_g) are gauge-invariant and calculable in lattice gauge theory
- Intrinsic spin contribution and orbital angular momentum are gauge inv. for quarks ($\frac{1}{2} \Delta \Sigma$ and L_q), but not for gluons (Δg and L_g)
- Probabilistic interpretation only for $\frac{1}{2} \Delta \Sigma$ (well measured)
- J_q accessible through exclusive lepton nucleon scattering
- J_g very difficult to access experimentally

(B) Light-cone gauge:
\[
\frac{1}{2} = \mathcal{J}_q + \mathcal{J}_g = \frac{1}{2} \Delta \Sigma + \mathcal{L}_q + \mathcal{G} + \mathcal{L}_g
\]

- All 4 terms have a probabilistic interpretation
- Δg is gauge invariant (being measured)

⇒ Results from both decompositions must not be mixed, as
\[
\mathcal{L}_q \neq L_q, \Delta g \neq \tilde{\Delta} g, \mathcal{L}_g \neq L_g, \text{ even } \mathcal{J}_g \neq J_g ! \text{ (courtesy M. Burkardt)}
\]
Deeply Virtual Compton Scattering

Same final state in **DVCS** and Bethe-Heitler ⇒ Interference!

\[
d\sigma(eN \rightarrow eN\gamma) \propto |T_{BH}|^2 + |T_{DVCS}|^2 + T_{BH} T_{DVCS}^* + T_{BH}^* T_{DVCS} + I
\]

- \(T_{BH}\) is parameterized in terms of Dirac and Pauli Form Factors \(F_1, F_2\), calculable in QED.
- \(T_{DVCS}\) is parameterized in terms of Compton form factors \(H, E, \tilde{H}, \tilde{E}\) (which are convolutions of resp. GPDs \(H, E, \tilde{H}, \tilde{E}\))
- (Certain Parts of) interference term \(I\) can be filtered out by forming certain cross section differences (or asymmetries)

⇒ GPDs \(H, E, \tilde{H}, \tilde{E}\) indirectly accessible via interference term \(I\)
Kinematic Coverage of DVCS Experiments

Fixed-target experiments:
\[x > 0.03, \ Q^2 < 10 \ \text{GeV}^2 \]

- COMPASS: low + medium \(x_B \)
- HERMES: medium \(x_B \), higher \(Q^2 \)
- JLab: medium+large \(x_B \), lower \(Q^2 \)
- JLab 11 GeV: larger \(x_B \), higher \(Q^2 \)

Collider experiments H1+ZEUS:
\[x_B < 0.01, \ Q^2 : 5...100 \ \text{GeV}^2: \]
- small skewness
\[\Rightarrow \] almost forward GPDs!

\[\Rightarrow \] fixed-target experiments essential to study non-forward region of GPDs!

\[\Rightarrow \] only COMPASS can explore low-\(x_B \)!
Pure gas target: polarized H, D; unpolarized H, D, N, Ne, Kr, Xe

Forward spectrometer: 40 mrad ≤ Θ ≤ 220 mrad

Tracking planes: \(\mathcal{O}(50)\) per spectrometer half: \(\delta p/p \sim 2\%, \delta \Theta \leq 1\) mrad

PID for \(e^\pm\): TRD, Preshower, Calorimeter

PID for \(\pi^\pm, K^\pm, p\): Dual-rad. Ring-imaging Cherenkov (2 < \(p\) < 15 GeV)

Recoil particle detection for data \(\geq 2006\) (unpolarized H target)
Exclusive DVCS Events at HERMES

REACTION: \(e + p(d) \rightarrow e + \gamma (+X) \)

- \(5 < \theta_{\gamma*\gamma} < 45 \) mrad
- \(-t < 0.7 \) GeV
- \(0.03 < x_B < 0.35 \)
- \(1 < Q^2 < 10 \) GeV²
- \(W > 3 \) GeV
- \(\nu < 22 \) GeV
- \(- (1.5)^2 < M_X^2 < (1.7)^2 \) GeV

- **.absolute** normalization of data and Monte Carlo [solid line]
- **elastic Bethe-Heitler process** is main contribution in signal region
- **associated Bethe-Heitler process** is a small contribution
- **semi-inclusive production** is main background at higher \(M_X^2 \)
- as recoiling proton not (yet) detected, **missing mass cut** used instead
- \(t \) calculated under assumption of exclusivity, via scattered lepton kinematics
Azimuthal Asymmetries in DVCS

DVCS–Bethe-Heitler Interference term I induces differences or azimuthal asymmetries A in the measured cross-section:

- **Beam-charge asymmetry $A_C(\phi)$ [BCA]:**
 \[
 d\sigma(e^+, \phi) - d\sigma(e^-, \phi) \propto \text{Re}[F_1 \mathcal{H}] \cdot \cos \phi
 \]

- **Beam-spin asymmetry $A_{LU}(\phi)$ [BSA]:**
 \[
 d\sigma(\vec{e}, \phi) - d\sigma(\vec{e}, \phi) \propto \text{Im}[F_1 \mathcal{H}] \cdot \sin \phi
 \]

- **Long. target-spin asymmetry $A_{UL}(\phi)$:**
 \[
 d\sigma(\vec{P}, \phi) - d\sigma(\vec{P}, \phi) \propto \text{Im}[F_1 \tilde{\mathcal{H}}] \cdot \sin \phi \text{ [LTSA]}
 \]

- **Transverse target-spin asymmetry $A_{UT}(\phi, \phi_s)$ [TTSA]:**
 \[
 d\sigma(\phi, \phi_s) - d\sigma(\phi, \phi_s + \pi) \propto \text{Im}[F_2 \mathcal{H} - F_1 \mathcal{E}] \cdot \sin (\phi - \phi_s) \cos \phi \\
 + \text{Im}[F_2 \tilde{\mathcal{H}} - F_1 \tilde{\mathcal{E}}] \cdot \cos (\phi - \phi_s) \sin \phi
 \]
 (F_1, F_2 are the Dirac and Pauli elastic nucleon form factors)
HERMES Combined BSA & BCA Analysis

Various asymmetry amplitudes \mathcal{A} contribute to polarized cross section σ_{LU}:

$$\sigma_{LU}(\phi; P_l, e_l) = \sigma_{UU}(\phi)[1 + e_1 A_C(\phi) + e_1 P_l A^I_{LU}(\phi) + P_l A^{DVCS}_{LU}(\phi)]$$

L: longitudinally polarized lepton beam of charge e_l & polarization P_l; U: unpolarized proton target

BCA:

$$A_C(\phi) = \frac{1}{\sigma_{UU}} c^I_1 \cos \phi + \cdots \quad c^I_1 \propto \frac{\sqrt{-t}}{Q} F_1 \Re \mathcal{H} + [\cdots]$$

BSA (interference term):

$$A^I_{LU}(\phi) = \frac{1}{\sigma_{UU}} s^I_1 \sin \phi + \cdots \quad s^I_1 \propto \frac{\sqrt{-t}}{Q} F_1 \Im \mathcal{H} + [\cdots]$$

BSA (DVCS term):

$$A^{DVCS}_{LU}(\phi) = \frac{1}{\sigma_{UU}} s^{DVCS}_1 \sin \phi \quad \text{(small at HERMES energy)}$$

Unpolarized cross section: $\sigma_{UU} = \sigma_{BH} + \sigma_{DVCS} + \sigma_I$

F_1: Dirac elastic nucleon form factor

\mathcal{H}: Compton Form Factor (CFF), embodies GPD \mathcal{H}

$[\cdots]$: kinematically suppressed CFFs ($\tilde{\mathcal{H}}, \mathcal{E}$) embodying GPDs $\tilde{\mathcal{H}}, \mathcal{E}$

Fit to data:

$$A_C(\phi) = \sum_{n=0}^{3} A^\cos n\phi \cos n\phi$$

$$A^I_{LU}(\phi) = \sum_{m=1}^{2} A^{\sin m\phi} \sin m\phi$$

$$A^{DVCS}_{LU}(\phi) = A^{\sin \phi}_{LU,DVCS} \sin \phi$$

Fit results: ‘effective’ asymmetry amplitudes: $A^\cos n\phi, A^{\sin m\phi}_{LU,I}, A^{\sin \phi}_{LU,DVCS}$

\Rightarrow well defined in theory, can be compared to GPD models!
HERMES Combined BSA & BCA Results

BSA

\[\propto F_1 \text{Im} \mathcal{H} \]

\[\propto \sin \phi \]

\[\propto \cos \phi \]

BCA

\[\propto -A_C \]

\[\propto F_1 \text{Re} \mathcal{H} \]

\[\propto \cos 2\phi \]

\[\propto \cos 3\phi \]

\[0 < -t < 0.7 \]

\[0.03 < x_B < 0.35 \]

\[1 < Q^2 < 10 \]
Discussion of Combined BSA & BCA Analysis

- HERMES BSA agrees with Dual model Guzey, (Polyakov), Teckentrup 2006
- HERMES BCA disfavours factorized t dep., in both models and D-term in VGG
- Pure $|DVCS|^2$ asymmetries found compatible with zero (as models assume)
 \Rightarrow HERMES data precise enough to discriminate between models or their variants
 \Rightarrow new models eagerly awaited !!! Müller, Kumericki
- PROBLEM: Asymmetries of ‘associated (resonance) production’ unknown !!!

Kinematic dependence of fractions of associated production known from MC:

Average is 12%

\Rightarrow In data associated production has to be treated as part of the signal, while in models it is not included (still unknown) \Rightarrow What to do?
HERMES Long. Target-spin Asymmetry vs. ϕ

\[A_{UL}(\phi) = \frac{1}{\langle |P_L| \rangle} \cdot \frac{d\sigma^{\rightarrow}(\phi) - d\sigma^{\leftarrow}(\phi)}{d\sigma^{\rightarrow}(\phi) + d\sigma^{\leftarrow}(\phi)} \propto F_1 \text{Im} \tilde{H} \sin \phi \]

⇒ extract ‘effective’ asymmetry amplitudes by fitting per ϕ-bin:
\[A_{UL}(\phi) = c + A_{UL}^{\sin \phi} \sin \phi + A_{UL}^{\sin 2\phi} \sin 2\phi \]

\[\leftarrow \text{proton} \quad \text{deuteron} \Rightarrow \]

- FULL existing data set analyzed (1996-2000 data)
- s_1 : expected $\sin \phi$ behaviour : 2σ (1.5σ) on p (d)
- s_2 : unexpected, sizeable ($>3\sigma$) $A_{UL}^{\sin 2\phi}$ on p (1.7σ on d) ⇒ twist-3 ?
- final analysis tuning and paper in progress
HERMES Long. Target-Spin Asymmetry vs. t

- **Twist-3 GPDs:** WW-term + interaction-dep. (qGq) term: $F_3^3 = F_{WW}^3 + F_{qGq}^3$

- **Existing models include only WW-terms of twist-3 GPDs**

- **Lowest t-bin:** No effect from coherent prod. on deuteron (40% of statistics)

- **Higher t:** $A_{UL}(ep) \neq A_{UL}(ed) \Rightarrow A_{UL}(ep) \neq A_{UL}(en)$

- **Only Proton models exist:** \rightarrow for $A_{UL}^{\sin \phi}$; VGG model does ok.

 \rightarrow for $A_{UL}^{\sin 2\phi}$: • VGG (twist-3 only WW) fails completely

 • D. Müller [priv.comm.]: Upper limits for qGq (dynamic) twist-3 corrections
\[A_{UT}(\phi, \phi_S) = A_{UT}^{\sin(\phi - \phi_S)} \cos \phi \cdot \sin(\phi - \phi_S) \cos \phi + A_{UT}^{\cos(\phi - \phi_S)} \sin \phi \cdot \cos(\phi - \phi_S) \sin \phi + \ldots \]

HERMES final data set with ‘unpolarized’ (U) \(e^\pm \) beam and transversely (T) polarized target.

‘Combined’ fit: simultaneous extraction of \(A_C \) and various ‘effective’ \(A_{UT} \) amplitudes for interference term and DVCS!

Why TTSA Data Expected to be Sensitive to J_q ?

\[\mathcal{A}_{UT}(\phi, \phi_S) \propto \text{Im}[F_2 \mathcal{H} - F_1 \mathcal{E}] \sin (\phi - \phi_S) \cos \phi + \text{Im}[F_2 \tilde{\mathcal{H}} - F_1 \xi \tilde{\mathcal{E}}] \cos (\phi - \phi_S) \sin \phi \]

ANSATZ: spin-flip Generalized Parton Distribution E is parameterized as follows:

- Factorized ansatz for spin-flip quark GPDs: $E_q(x, \xi, t) = \frac{E_q(x, \xi)}{(1-t/0.71)^2}$

- t-indep. part via double distr. ansatz: $E_q(x, \xi) = E^{DD}_q(x, \xi) - \theta(|\xi - |x||) D_q \left(\frac{x}{\xi} \right)$

- using double distr. K_q: $E^{DD}_q(x, \xi) = \int_{-1}^{1} d\beta \int_{-1}^{1-|\beta|} d\alpha \delta(x - \beta - \alpha \xi) K_q(\beta, \alpha)$

- with $K_q(\beta, \alpha) = h(\beta, \alpha) e_q(\beta)$ and $e_q(x) = A_q \text{qval}(x) + B_q \delta(x)$ based on chiral QSM

- where coeff.s A_q, B_q constrained by Ji relation, and $\int_{-1}^{+1} dx \ e_q(x) = \kappa_q$

- A_u, A_d, B_u, B_d are functions of J_u, J_d

 $\Rightarrow J_u, J_d$ are free parameters when calculating TTSA

- Sensitivity to J_u (with $J_d = 0$) studied [EPJ C46, 729 (2006), hep-ph/0506264]
Model-dependent constraints on J_u vs J_d

HERMES analysis method:
(acc. by JHEP; arXiv:0802.2499 [hep-ex])

Unbinned maximum likelihood fit to all possible azimuthal asymmetry amplitudes at average kinematics:

⇒ ‘combined fit’ of HERMES BCA and TTSA data against various model calculations, leaving J_u and J_d as free parameters ⇒ model-dep.

1-σ constraints on J_u vs. J_d:

- **Double-distribution model:** $J_u + J_d/2.8 = 0.49 \pm 0.17$ (exp$_{\text{tot}}$)

- **Dual model** [Guzey, Teckentrup]: $J_u + J_d/2.8 = -0.02 \pm 0.27$ (exp$_{\text{tot}}$)

- **Lattice gauge theory:** QCDSF [Göckeler et al.], LHPC [Hägler et al.]

- **DFJK model:** zero-skewness GPDs extracted from nuclear form factor data using valence-quark contributions only [Diehl et al.]
DVCS on Nuclear Targets

INCOHERENT PRODUCTION:

- nucleus breaks up & scattering occurs on single nucleon
- neutron e.m. form factor is small for small & medium \(t \)
 \(\rightarrow \) BH neutron cross section small, hence also the interference term \(I \)
 \(\rightarrow \) asymmetry in incoherent nuclear DVCS similar to that on the proton

COHERENT PRODUCTION:

- scattering occurs on the whole nucleus
 \(\rightarrow \) coherent nuclear DVCS proceeds preferentially at very low \(t \)
- Obtain enriched samples: coherent: \(-t < -t_{coh.} \), incoherent: \(-t > -t_{incoh.} \)

GPD-based MODELS:

- describe modifications of parton-parton correlations in nuclear environment
 \(\rightarrow \) dynamical interplay within highly complex bound hadronic systems
- tool to compare to theory predictions: \(\frac{A_{nucleus}}{A_{proton}} \) (generalized EMC effect)
Nuclear DVCS: Beam-charge Asymmetry

- All nuclear data (1997-2005) incl.

‘Combined’ analysis for H, Kr, Xe targets using e^\pm beam

- π^0 background $\approx 5\%$, corrected for

Coherent-enriched sample: no significant BCA observed
Inner error bars are statistical and outer ones the total exp. uncertainty

Incoherent-enriched sample: same asymmetry seen for H, Kr, Xe
Smearing (always small) and acceptance not yet included in error bar, but demonstrated with Dual Model (V. Guzey, arXiv:0801.3235 [hep-ph])

Good agreement with Dual Model for all targets
Nuclear vs. Hydrogen BSA Ratio in DVCS

‘Combined’ analysis for H, Kr, Xe targets using e^\pm beam

Single-BSA analysis for He, N, Ne
(e^+ data only)

Background and other exp. effects corrected.
Smearing (small) and acceptance not included.

Measured ratio $A_{LU,A}^{(I),\sin \phi} / A_{LU,H}^{(I),\sin \phi} \approx 1$ for both samples

Good agreement with Dual Model for all targets

Not shown for both coherent and incoherent-enriched samples:
* $A_{LU,A}^{(I),\sin \phi} \approx 0.2$, $A_{LU,A}^{(DVCS),\sin \phi} \approx 0$ and $A_{C}^{\cos \phi} \approx 0$
* No significant A-dependence from H to Xe for any of them
Nuclear DVCS: BCA vs. t

Measured $A_C^{\cos \phi}$ vs. t (estimated resonance fraction shown for each bin)

HERMES PRELIMINARY

(uncorrected for smearing & acceptance effects)

$e^+ p \rightarrow e^+ \gamma X$

$e^+ Kr \rightarrow e^+ \gamma X$

$e^+ Xe \rightarrow e^+ \gamma X$

-- Dual Model at (kinematics)

Dual Model MC including smearing & acceptance

Kr and Xe agree with H within larger uncertainties of nuclear data

all 3 targets agree with Dual Model calculations
Nuclear DVCS: BSA_I vs. t

Measured $A_{LU}^{(I), \sin \phi}$ vs. t (estim. resonance fraction shown for each bin)

- Kr shows t dep. different from H, other 4 targets not conclusive
- all 6 targets agree with Dual Model calculations
Exclusive Meson Production

- In the limit of Q^2 large at x_B, t fixed, the $\gamma^* p$ amplitude factorises
- Contributions to the cross section:

 γ^*_L leading-twist

 (QCD factorisation theorem holds)

 $\gamma^*_L - \gamma^*_T$ suppressed

 γ^*_T suppressed

 ! No precocious scaling at $Q^2 \geq 1 \text{ GeV}^2$ for hard exclusive meson production!

- Exclusive production of

 $\gamma \rightarrow H, E, \tilde{H}, \tilde{E}$

 $\rho, \omega, \phi \rightarrow H, E$

 $\pi, \eta \rightarrow \tilde{H}, \tilde{E}$

- For exclusive π^+ production $\gamma^* p \rightarrow \pi^+ n$:

 $\sigma_L \propto (1 - \xi^2) |\tilde{H}|^2 - \xi^2 t |\tilde{E}|^2 - \xi^2 \text{Re}(\tilde{E}^* \tilde{H})$

 ξ: skewness
HERMES: Exclusive π^+ Diff. Cross Section

GPD model for $\frac{d\sigma_L}{dt'}$

[VGG PRD60(1999)094017]

- - - LO with power corr's

- \tilde{E} dominated by pion pole F_π
- \tilde{H} neglected
- Regge-inspired t dependence for \tilde{E}
- power corrections due to intrinsic k_\perp and soft-overlap contribution

⇒ Power corrections are needed! Fair agreement with data only at lower t'

Regge model

- - - - $\frac{d\sigma}{dt}$ $\frac{d\sigma_L}{dt'}$

- π^+ production described by exchange of π and ρ Regge trajectories
- Q^2 and t' dep. FFs for $\pi\pi\gamma$ and $\pi\rho\gamma$
- σ_T predicted to be 15-25% of σ
 (about 6% at low t')

⇒ Good description of magnitude and $-t'$, Q^2 dependences of the data

[PLB659, 486(2008)]
HERMES: Excl. π^+ Total Cross Section vs. Q^2, t

For analysis details see PLB659,486(2008), arXiv:0707.0222 [hep-ph]

GPD model for $\frac{d\sigma}{dt'}$

[VGG PRD60(1999)094017]

- - - LO with power corr's

⇒ Without power corrections: far below data
⇒ With power corrections: Still undershoot all data. Good agreement in shape, but only for $Q^2 < 6$ GeV2 ⇒ ???

Regge model

- - - - - σ

⇒ For each x_B bin: good agreement at higher Q^2, but clear overshoot at lower Q^2 ⇒ ??
Exclusive π^+ Transv. Target-spin Asymmetry

\[A_{UT}^{\sin(\phi - \phi_S)} \propto \frac{\text{Im}(\tilde{E}^* \tilde{H})}{|\tilde{H}|^2 - \xi^2 t |\tilde{E}|^2 - \xi^2 \text{Re}(\tilde{E}^* \tilde{H})} \]

\[t = -0.1 \text{ GeV}^2 \]

\[t = -0.3 \text{ GeV}^2 \]

\[t = 0 \text{ GeV}^2 \]

\[Q^2 \sim 2-4 \text{ GeV}^2 \]

\[x_{bj} \]

\[\tilde{H}, \tilde{E} \]: Chiral-quark soliton model

\[\text{Asymptotic & Chernyak-Zhitnitsky DA} \]

[Franfurt et al., PRL 84(2000)2589]

\[\Rightarrow \text{Large asymmetry predicted by both models!} \]

\[\tilde{H} \]: double-distribution ansatz

\[\tilde{E} \]: pion-pole dominated ansatz

\[\text{Small NLO corrections!} \]

[Belitsky,Mueller,PLB513(2001)349]
HERMES: Kinematic dependence of $A_{UT}^{\pi^+}$

e p \rightarrow e' π^+ n

Preliminary result:

- Exclusive asymmetry in: $M_X^2 = [0.5 - 1.2] \text{ GeV}^2$
- Backgr. asymmetry from $M_X^2 = [1.9 - 3.3] \text{ GeV}^2$
- Average kinematics:
 $\langle -t \rangle = 0.182 \text{ GeV}^2$
 $\langle x \rangle = 0.126$
 $\langle Q^2 \rangle = 2.38 \text{ GeV}^2$

- Small overall value for leading effective asymmetry amplitude $A_{UT}^{\sin(\phi-\phi_S)}$
- Unexpected large overall value for effective asymmetry amplitude $A_{UT}^{\sin(\phi_S)}$
Of main theoretical interest is the t dependence of the leading asymmetry amplitude $A_{UT}^{\sin(\phi - \phi_S)} \propto \text{Im}(\tilde{E}^*\tilde{H})$:

Measurement indicates sign change-over or consistency with zero

Cross section result indicates that power corrections to \tilde{E} are important

 therefore \tilde{E} is supposedly large

 but \tilde{H} remains small

$\Rightarrow A_{UT}^{\sin(\phi - \phi_S)}$ measurement consistent with cross section result
Transv. Target-spin Asymmetry in ρ^0 Prod.

Motivation to study ρ^0 TTSA (see EPJC46(2005)729)

Strongly simplified:

$$A_{UT}^\rho \propto \frac{E_q+E_g}{H_q+H_g}$$

- Only in ρ prod. gluon contribution enters in LO
- asymmetry projections shown left are for passive gluons, i.e. $H_g \neq 0$ but $E_g = 0$
- for active gluons, i.e. $H_g \neq 0$ and $E_g \neq 0$, the asymmetry may be considerably larger

Preliminary result: full transverse target data set

σ_L, σ_T separated by preceding determination of ρ^0 spin density matrix elements

Compare data vs. projections

- suggested value of J_u of order of 0.2 at $J_d = 0$
- consistent with J_u result from DVCS data
- statistics too low to reliably determine this value and its uncertainty
- simultaneous J_u, J_d fit from ρ^0 data impossible
- no indication for large active gluon contribution
Summary

The HERMES experiment played a pioneering role in the study of exclusive photon and meson production. Azimuthal asymmetries were measured with respect to beam spin and charge, and to longitudinal and transverse target polarization. Also, a variety of unpolarized nuclear targets was used.

An interpretation of the data in terms of GPDs has been started, also Regge-based models are challenged. Constraints on GPD models were obtained, in particular (model-dependent) constraints on the u and d-quark total angular momenta.

Presently it appears that the quality of the data is higher than that of the available models!