Spin Structure of Nucleons

XXVI Physics in Collisions, Búzios, Brazil, July 6-9 2006

Wolf-Dieter Nowak

DESY, D-15738 Zeuthen

Wolf-Dieter.Nowak@desy.de
Table of Contents

- Spin budget of the proton
- DIS kinematics
- Tensor structure function of the deuteron
- Spin contributions from sea quarks
- QCD Fits
- Gluon contribution to Nucleon Spin
- Transversity: Sivers & Collins moments
- DVCS: target-spin asymmetries
- Model-dependent constraint on J_u vs. J_d
- Summary and Outlook
Spin Budget of the Proton

Naive Quark-Parton Model:

\[\Delta q_u = \frac{4}{3}, \quad \Delta q_d = -\frac{1}{3} \]
\[\Delta \Sigma = \Delta q_u + \Delta q_d + \Delta q_s = 1 \]

Relat. Quark-Parton Model:

\[\text{Quark spin: } \Delta \Sigma \approx 0.6 \]

EMC [PLB206(1988)364]:
\[\Delta \Sigma = 0.060 \pm 0.047 \pm 0.069 \]

HERA collider results:

- Gluons are important
- Measure \(\Delta G \! \)

Proton spin budget:

\[J = \frac{1}{2} = J^Q(\mu) + J^G(\mu) \]
\[J^G = \Delta G + L^G \]
\[J^Q = \frac{1}{2} \Delta \Sigma + L^Q \]

Since: \(\Delta q_f = \Delta q_f^{val} + \Delta q_f^{sea} \)
\(L^Q : \) Quark orb. ang. mom.

Measure \(\Delta q_f^{sea} ! \)
Measure \(J^Q : DVCS ! \)

at: COMPASS, HERMES, RHIC

at: HERMES, polar. RHIC

at: HERMES, JLAB
DIS: Kinematics, Cross Sections, Asymmetry

Virtual-photon kinematics:

\[Q^2 = -q^2 \quad \nu = E - E' \]

Fraction of nucleon momentum carried by struck quark:

\[x = \frac{Q^2}{2 M \nu} \]

Fraction of virtual-photon energy carried by produced hadron \(h \):

\[z = \frac{E_h}{\nu} \]

Hadron transverse momentum:

\[P_{h \perp} \]

Unpolarized cross section:

\[\sigma_{UU} \equiv \frac{1}{2} (\sigma_{\mp} + \sigma_{\mp}) \]

Cross section (helicity) difference:

\[\sigma_{LL} \equiv \frac{1}{2} (\sigma_{\mp} - \sigma_{\mp}) \]

Double-spin asymmetry:

\[A_{\parallel} \equiv \frac{\sigma_{LL}}{\sigma_{UU}} \sim \frac{g_1}{F_1} \] (neglecting small \(g_2 \) contribution)

Measured asymmetry:

\[A_{\parallel} = \frac{1}{\langle P_T \rangle \langle P_B \rangle} \left(\frac{N}{L} \right)_{\mp} - \left(\frac{N}{L} \right)_{\mp} \]

\[+ \left(\frac{N}{L} \right)_{\mp} \]
DIS Structure Functions in Quark-Parton Model

- h_γ:
- h_D
- q^\uparrow
- q^\downarrow
- q^0

Spin-$\frac{1}{2}$

Nucleon

Spin-1

Deuteron

\[
F_1^{p,n} = \frac{1}{2} \sum_f e_f^2 \left(q_f^- + q_f^+ \right) = \frac{1}{2} \sum_f e_f^2 q_f
\]

\[
F_1^{d} = \frac{1}{3} \sum_f e_f^2 \left(q_f^- + q_f^+ + q^0 \right)
\]

\[
g_1^{p,n} = \frac{1}{2} \sum_f e_f^2 \left(q_f^- - q_f^+ \right) = \frac{1}{2} \sum_f e_f^2 \Delta q_f
\]

\[
g_1^{d} = \frac{1}{2} \sum_f e_f^2 \left(q_f^- - q_f^+ \right)
\]

\[
b_1^{d} = \frac{1}{2} \sum_f e_f^2 \left(2q_f^0 - (q_f^- + q_f^+) \right)
\]

- g_1 measures a certain combination of quark + anti-quark helicity distributions $\Delta q_f = \Delta q_f^{val} + \Delta q_f^{sea}$

\Rightarrow No new g_1 data published by HERMES or COMPASS during last 12 months

- b_1^{d} measures nuclear effects that make the deuteron look different from just the most simple proton-neutron system

Wolf-Dieter Nowak (DESY)

XXVI Physics in Collisions, Búzios, Brazil, July 6-9 2006
Tensor Asymmetry in DIS on Deuteron

\[
\frac{d^2 \sigma_{\text{meas}}}{dxdQ^2} = \frac{d^2 \sigma_{\text{unpol}}}{dxdQ^2} \left[1 - P_z P_B D A_1 + \frac{1}{2} P_{zz} A_{zz} \right]
\]

- \(\sigma_{\text{unpol}} = \sigma^{\uparrow\uparrow} + \sigma^{\uparrow\downarrow} + \sigma^0 \)
- \(P_{zz} = \frac{n^+ + n^- - 2n^0}{n^+ + n^- + n^0} \)
- \(A_{zz} = \frac{(\sigma^{\uparrow\uparrow} + \sigma^{\uparrow\downarrow}) - 2\sigma^0}{3\sigma_{\text{unpol}} P_{zz}^0} \)

<table>
<thead>
<tr>
<th>vector term</th>
<th>tensor term</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma^{\uparrow\uparrow})</td>
<td>(+</td>
</tr>
<tr>
<td>(\sigma^{\uparrow\downarrow})</td>
<td>(-</td>
</tr>
<tr>
<td>(\sigma_0)</td>
<td>(< 0.01)</td>
</tr>
</tbody>
</table>

\[|P_z \cdot P_B| = 0.45 \pm 0.04 \]
\[P_{zz}^0 = 0.83 \pm 0.03 \]

Tensor structure function \(b_1 \) from tensor asymmetry \(A_{zz} \):

\[
b_1^d = -\frac{3}{2} A_{zz}^d F_1^d
\]

\[
F_1^d = \frac{1 + Q^2/\nu^2}{2x(1+R)} F_2^d
\]
Tensor Structure Function $b_1^d(x)$

HERMES result [PRL95 (2005) 242001]

Theory work < 1997:
- binding & Fermi motion effects at $x \geq 0.2$

Theory ≥ 1997: Double scattering
- diffr. nucl. shadowing + pion excess mech.
 Nikolaev et al., PLB 398, 245 (1997)
- coherent double scattering
 Edelmann et al., PRC 57, 3392 (1998)
- double scattering through VMD
 Bora & Jaffe, PRD 57, 6906 (1998)

→ observe significant enhancement of b_1 at small x_B:
- Close-Kumano sum rule $\int dx \, b_1(x, Q^2) = 0$ violated ??
- interpretable as tensor polarization of the quark sea?
Sea Quark Flavor Asymmetry

\[A_1^h(x, z) \propto \frac{\sum_f e_f^2 \Delta q_f(x) D_f^h(z)}{\sum_f e_f^2 q_f(x) D_f^h(z)} \]

with \(D_f^h(z) \): Fragmentation function

\(\text{HERMES: } 5\text{-parameter flavor separation} \)

[PRD 71(2005) 012003]: semi-inclusive pion & kaon and inclusive asymmetries:

\[\int_{0.023}^{0.3} (\Delta q_u(x) - \Delta q_d(x)) \, dx = 0.05 \pm 0.06 \pm 0.03 \]

[PRD 71(2005) 012003]
Spin Contribution of Strange Quarks

HERMES ‘isoscalar’ extraction method uses only deuterium data:

- $K^+ & K^-$ multiplicities, inclusive asymmetry A_{1}^{d}, kaon asymmetries $A_{1}^{K^+}$, $A_{1}^{K^-}$

⇒ Fit parameters: $\Delta S(x) = q_s(x) + \bar{q}_s(x)$; $\Delta Q(x) = q_u(x) + \bar{q}_u(x) + q_d(x) + \bar{q}_d(x)$

$$\int_{0.02}^{0.6} \Delta S(x) \, dx = 0.006 \pm 0.029 \pm 0.007 \quad \text{[preliminary 2005]}$$

⇒ small ΔG? (suggested: gluon splitting into strange sea through axial anomaly)

Note: uncertainties very sensitive to fragmentation function input
Next-to-leading Order QCD Fits

Typical (and most recent) results by AAC [hep-ph/0603213]: NLO in α_s, \overline{MS} scheme

Assumptions:
- Flavor-symmetric Δq_{sea}
- Integrals of Δq_u^{val} and Δq_d^{val} fixed by weak decay constants F and D

Input experimental data:
- $A_1^{p,d}$ from COMPASS, JLAB, HERMES
- $A_{LL}^{\pi^0}$ from PHENIX

Results at $Q^2 = 1$ GeV2: $\Delta \Sigma = 0.25 \pm 0.10$
$\Delta G = 0.47 \pm 1.08$ (DIS alone); $\Delta G = 0.31 \pm 0.32$ (DIS+PHENIX)

NOTE: From g_1^d: $\Delta \Sigma_{0.01<x<1}^{exp} \approx 0.35 \pm 0.03$, while $\Delta \Sigma_{0<x<0.01}^{fit} \approx -0.13 \pm 0.11$ is obtained for low-x ’extrapolation’ (due to stiff shape of PDF parameterizations)

ALSO: low-x data urgently needed to constrain $g_1^{p,d}$ (E-RHIC, ELIC)
Determination of Gluon Contribution to Nucleon Spin

- Process: High-p_t hadron pairs in quasi-real photoprod.: $\langle Q^2 \rangle \approx 0.1$ GeV2
- Sensitivity through $\gamma^* g$ ‘direct’ hard scattering or ‘resolved-photon’ process
 - left graphs: direct processes; right graphs: resolved-photon processes [COMPASS analysis]

Extraction heavily relies on PYTHIA simulation (LO only !)

Hard scale $\mu^2 \simeq 3$ GeV2
 - only ‘loosely’ correlated with $x_g \langle x_g \rangle \simeq 0.1$

Other processes:

- **COMPASS**: Open-charm production ($\gamma^* g \rightarrow c\bar{c}$)
- **HERMES**: Quasi-real photoproduction of single high-p_t hadrons
- **RHIC**: A_{LL} in inclusive direct γ & π^0 production, inclusive jet production
Results on Gluon Distribution $\Delta g_g(x_g)$

- Most precise result from high-p_t hadron pairs \downarrow COMPASS \downarrow

$$Q^2 < 1 \text{ GeV}^2 \ (\langle x_g \rangle \simeq 0.085):$$
$$\frac{\Delta g}{g} = 0.016 \pm 0.058_{\text{stat}} \pm 0.055_{\text{syst}}$$
[PLB 612,154 (2005)]

$$Q^2 > 1 \text{ GeV}^2 \ (\langle x_g \rangle \simeq 0.13) \ [\text{prel.}]:$$
$$\frac{\Delta g}{g} = 0.06 \pm 0.31_{\text{stat}} \pm 0.06_{\text{syst}}$$

Open charm ($\langle x_g \rangle \simeq 0.15) \ [\text{prel.}]:$
$$\frac{\Delta g}{g} = -0.57 \pm 0.31_{\text{stat}}$$

- Results of other experiments:

- HERMES high-p_t hadron pairs (all Q^2, $\langle x_g \rangle \simeq 0.17) \ [\text{PRL84 (2000) 2584}]$

 $$\frac{\Delta g}{g} = 0.41 \pm 0.18_{\text{stat}} \pm 0.03_{\text{exp-syst}}$$

- PHENIX: Presently only confidence limits for different $\frac{\Delta g}{g}$ assumptions
 [PANIC05 talk]
The third twist-2 PDF: Transversity

Optical theorem:

\[q_f(x) = q_f^>(x) + q_f^<(x) \sim Im(A_{++,++} + A_{+-,+-}) \]

\[\Delta q_f(x) = q_f^>(x) - q_f^<(x) \sim Im(A_{++,++} - A_{+-,+-}) \]

\[\delta q_f(x) \quad alias \quad h_1(x) \sim Im A_{+-,-+} \]

Positivity limit & Soffer bound:

\[|\delta q_f(x)| < q_f(x) \]

\[|\delta q_f(x)| < \frac{1}{2} (q_f(x) + \Delta q_f(x)) \]
How to Measure Transversity?

- Hard interactions conserve chirality
- In DIS: chirality-flip diagram suppressed by quark mass
- The transversity distribution function is chiral-odd
 ⇒ not accessible in DIS!

Semi-inclusive DIS:

$\sigma^{eH \rightarrow ehX} \propto \sum_q D^{H \rightarrow q} \otimes \sigma^{eq \rightarrow eq} \otimes F^{q \rightarrow h}$

where D denotes a distribution function and F a fragmentation function.

(Factorization not yet proven for transv.-mom.-dependent subleading 1/Q terms)

Need another chiral-odd object: Collins fragmentation function H_1^\perp

- also ‘T-odd’ (=odd under naive time reversal)
- represents interference of 2 amplitudes with different imaginary parts
 ⇒ H_1^\perp can generate a single-spin asymmetry

NOTE: SIDIS alone can not independently determine δq and H_1^\perp (only shapes!)

Collins function from Belle e^+e^- data: 1st result! [hep-ex/0507063, acc. by PRL]

Drell-Yan can yield transversity: upgraded RHIC, PAX? (only large x, 2012?)
SIDIS: Two contrasting T-odd Phenomena

A single-spin asymmetry can arise from some (naive) T-odd mechanism. With transverse target polarization two mechanisms become distinguishable:

Transversity + T-odd Collins FF

Transversity: polarizations of quark and nucleon correlated

Photoabsorption flips quark polarization component in lepton scattering plane

Quark polarization correlates with fragmentation $k_T \rightarrow P_{h\perp}$ i.e. hadron production plane

\Rightarrow Single Target Spin Asymmetry $\propto \sin (\phi + \phi_S)$

T-odd Sivers distrib. function f_{1T}^+

p_T of UNpolarized struck quark correlated with target polariz.

p_T survives fragmentation, inherited by hadron $P_{h\perp}$

\Rightarrow Orientation of lepton scattering plane is irrelevant

\Rightarrow Single Target Spin Asymmetry $\propto \sin (\phi - \phi_S)$
Extraction of Sivers & Collins Azimuthal Moments

Study azimuthal distributions of hadrons in: $e^\pm \, p^\uparrow \longrightarrow e^\pm \, \pi^\pm + X$

unpol. beam (U), transv. pol. target (T)

$A^\ell_{UT}(\phi, \phi_S) = \frac{1}{\langle S_T \rangle} \frac{N^\uparrow(\phi, \phi_S) - N^\downarrow(\phi, \phi_S)}{N^\uparrow(\phi, \phi_S) + N^\downarrow(\phi, \phi_S)}$

$\sim \sin(\phi - \phi_S) \sum_q e_q^2 \mathcal{I} \left[w_{Siv}(p_T, P_{h\perp}) f_{1T}^{q}(x, p_T^2) \, D_q^q(z, k_T^2)\right]$

$+ \sin(\phi + \phi_S) \sum_q e_q^2 \mathcal{I} \left[w_{Coll}(k_T, P_{h\perp}) h_{1T}^{q}(x, p_T^2) \, H_q^q(z, k_T^2)\right] + \ldots$

$\mathcal{I}[\ldots]$: convol. integral over initial (p_T) and final (k_T) quark transverse momenta

\Rightarrow can NOT DIRECTLY extract transverse-momentum-dependent functions!

\Rightarrow Determine (simultaneously) Sivers and Collins convolution integrals by a fit:

$$A^\ell_{UT}(\phi, \phi_S) = 2 \left\langle \sin(\phi - \phi_S) \right\rangle^\ell_{UT} \sin(\phi - \phi_S) + 2 \left\langle \sin(\phi + \phi_S) \right\rangle^\ell_{UT} \sin(\phi + \phi_S)$$

NOTE: asymmetry weighting by $P_{h\perp}/(zM_h)$ makes convolution integral calculable (involves acceptance dependence)
Results on Sivers Moments from 2002-2004 data

\[2 \left\langle \sin(\phi - \phi_S) \right\rangle^\ell_{UT} \approx 2 \left\langle \sin(\phi - \phi_S) \right\rangle^\gamma_{UT} \propto - \sum_q e_q^2 \mathcal{I} \left[\omega_{SiV} f_{1T}^{q \perp}(x, p_T^2) D_1^q(z) \right] \]

\[\left\langle \sin(\phi - \phi_S) \right\rangle_{UT} \]

\(\pi^+ \): positive; \(\pi^- \): consistent with zero

\(f_{1T}^{q \perp} \) negative (using Trento convention)

\(f_{1T}^{u \perp} \)

consistent with Burkhardt’s picture of ‘Chromodynamic lensing’!

\(\text{COMPASS}: \) ‘zero’ results (deuteron target!)

\[\text{NOTE: Contamination (2-16%) by decay of exclusively produced vector mesons} \]
Results on Collins Moments from 2002-2004 data

\[2 \left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^\ell \approx 2 \left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\gamma^*} \propto \sum_q e_q^2 T \left[w_{Coll} h_{1T}^q(x, p_{T}^2) H_1^\perp,q(z, k_{T}^2) \right] \]

- **pos. HERMES** π^+ results – no surprise: u-quark dom. and $\delta q > 0$ as $\Delta q > 0$
- **negative HERMES** π^- results were a surprise – now understood to require disfavored Collins function be large and opposite in sign (Artru fragm. model)

\[\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\pi^+} \]

- grey bands: predictions [hep-ph/0603054] of chiral quark soliton model:
 - **x-dependence:** mean Collins function fitted and found to be x-independent
 - **z-dependence:** Collins fct. extracted from BELLE e^+e^- data [hep-ex/0507063]

COMPASS: ‘zero’ results (on deuteron!)

\[\Rightarrow \text{HERMES, COMPASS and BELLE compatible} \]

COMPASS will take proton data in 2006
Deeply Virtual Compton Scattering

(a) \[\begin{array}{c}
\text{e} \\
\gamma^* \\
p \\
p' \\
\end{array} \]
(b) \[\begin{array}{c}
\text{e} \\
\gamma^* \\
p \\
p' \\
\end{array} \]

- Same final state in DVCS and Bethe-Heitler \(\Rightarrow \) Interference!

\[d\sigma(eN \rightarrow eN\gamma) \propto |T_{BH}|^2 + |T_{DVCS}|^2 + T_{BH}T_{DVCS}^* + T_{BH}^*T_{DVCS} \]

- \(T_{BH} \) is calculable in QED and parameterized in terms of Dirac and Pauli Form Factors \(F_1, F_2 \)

- \(T_{DVCS} \) is parameterized in terms of Compton form factors \(\mathcal{H}, \mathcal{E}, \tilde{\mathcal{H}}, \tilde{\mathcal{E}} \) (which are convolutions of resp. GPDs \(H, E, \tilde{H}, \tilde{E} \))

- (Certain Parts of) interference term \(\mathcal{I} \) can be filtered out by forming certain cross section differences (or asymmetries) \(\Rightarrow \) GPDs \(H, E, \tilde{H}, \tilde{E} \) indirectly accessible via interference term \(\mathcal{I} \)
Azimuthal Asymmetries in DVCS

DVCS–Bethe-Heitler Interference term \mathcal{I} induces azimuthal asymmetries in cross-section:

- **Beam-charge asymmetry** $A_C(\phi)$ [BCA]:
 \[d\sigma(e^+, \phi) - d\sigma(e^-, \phi) \propto \text{Re}[F_1\mathcal{H}] \cdot \cos \phi \]

- **Beam-spin asymmetry** $A_{LU}(\phi)$ [BSA]:
 \[d\sigma(\vec{e}, \phi) - d\sigma(\vec{e}, \phi) \propto \text{Im}[F_1\mathcal{H}] \cdot \sin \phi \]

- **Long. target-spin asymmetry** $A_{UL}(\phi)$:
 \[d\sigma(\vec{P}, \phi) - d\sigma(\vec{P}, \phi) \propto \text{Im}[F_1\mathcal{H}] \cdot \sin \phi \text{ [LTSA]} \]

- **Transverse target-spin asymmetry** $A_{UT}(\phi, \phi_S)$ [TTSA]:
 \[d\sigma(\phi, \phi_S) - d\sigma(\phi, \phi_S + \pi) \propto \text{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \cdot \sin(\phi - \phi_S) \cos \phi \]
 \[+ \text{Im}[F_2\mathcal{H} - F_1\xi\mathcal{E}] \cdot \cos(\phi - \phi_S) \sin \phi \]

(F_1, F_2 are the Dirac and Pauli elastic nucleon form factors)
First Data on Beam-charge Asymmetry

\[A_C(\phi) = \frac{d\sigma^+/(\phi) - d\sigma^-/(\phi)}{d\sigma^+/(\phi) + d\sigma^-/(\phi)} \propto \text{Im} F_1 H \cdot \cos \phi + \ldots \]

⇒ extract ‘amplitudes’ by fitting in every \(\phi \)-bin

\[A_C(\phi) = \text{const.} + A_C^{\cos \phi} \cos \phi + A_C^{\cos 2\phi} \cos 2\phi + A_C^{\cos 3\phi} \cos 3\phi \]

First measurement by HERMES (unpolar. proton target) [hep-ex/0605108, subm. to PRL]:

- use symmetrization \((\phi \rightarrow |\phi|)\) to get rid of sinusoidal terms
- \(A_C^{\cos \phi} = 0.060 \pm 0.027\), other contributions insignificant (dashed = pure \(\cos \phi\))

asymmetry only in exclusive and ‘associate’ \(M_X\) region \((\rightarrow \text{resol. smearing})\)

preliminary deuteron data (not shown) completely consistent
First Conclusion on GPD Models?

BCA t-dependence can distinguish different GPD model versions:

- $A_C^{\cos \phi}$: elastic + associated production
- d-data: contributions per t-bin of associated production: 5,11,18,29%
 \Rightarrow highest t-bin mostly affected
- GPD H dominates, \tilde{H} and E suppressed
- Curves (code [Vanderhaeghen,Guichon,Guidal]) calculated for 4 different parameter sets
- BCA insensitive to profile fct. parameters

HERMES HERA-I data disfavor Regge-inspired t-dependence with D-term

5 times more precise BCA data on HERMES disk from HERA-II

(this data may benefit from recoil detector, presently being commissioned)

Further BCA data only in far future (COMPASS>2010 ?, JLAB>2015 ???)
Longitudinal Target-spin Asymmetry

\[A_{UL}(\phi) = \frac{1}{\langle |P_L| \rangle} \cdot \frac{d\sigma \Rightarrow (\phi) - d\sigma \Rightarrow (\phi)}{d\sigma \Rightarrow (\phi) + d\sigma \Rightarrow (\phi)} \propto \text{Im}\{F_1 \tilde{H} + \xi (F_1 + F_2) \mathcal{H} + \ldots\} \sin \phi \]

\[\Rightarrow \text{extract ‘amplitudes’ fitting per } \phi \text{-bin } A_{UL}(\phi) = c + A_{UL}^{\sin \phi} \sin \phi + A_{UL}^{\sin 2\phi} \sin 2\phi \]

- 1st published measurement: CLAS 2000-01 proton data [hep-ex/0605012]
- May 2005 prel. HERMES results (1996-2000 proton and deuteron data)
- both data sets have similar statistics and show expected \(\sin \phi \) behaviour
- HERMES can approach lower \(t \)-values
- CLAS vs GPD model [PRD60,094017(1999)]: large contribution from GPD \(\tilde{H} \)!
Transverse Target-spin Asymmetry: Sensitivity to J_u

First A_{UT} measurement by HERMES (U: unpolar. beam, T: transv. pol. target) (twice more HERMES statistics on disk)

JLAB: transv. target ≥ 2008 ?, COMPASS: plans for 2010

GPD E can be modeled in forward limit by $e(x) = Aq_{val}(x) + B\delta(x)$ acc. to χQSM model [Prog.Part.Nucl.Phys.47(2001)401]

$A_{UT}^{\sin(\phi - \phi_S)\cos\phi}$ sensitive to J_u, not to the other parameters [hep-ph/0506264]
Model-dependent Constraint on J_u vs J_d

Unbinned maximum likelihood fit to $A_{UT}^{\sin(\phi - \phi_S) \cos \phi}$ at average kinematics (fitting prel. HERMES data against VGG-model based calculations), leaving J_u and J_d as free parameters \Rightarrow model-dependent 1-σ constraint on J_u vs. J_d:

![Graph showing the model-dependent constraint between J_u and J_d with a shaded area indicating the 1-σ confidence interval.]

- Quenched lattice calculation done with pion masses 1070, 870, and 640 MeV, and then extrapolated linearly in m_{π}^2 to the physical value
- Uncertainties on VGG model parameters shown as separate uncertainty (± 0.06)
Summary and Outlook

Improvement over last 4 years:

- Spin-independent & helicity PDFs:
 - **COMPASS**: $\Delta g/g$
 - **HERMES**: $\Delta q_u, \Delta q_d, \Delta q_s$
 - **JLAB**: $\Delta q_u, \Delta q_d$ at large x
 - **more**: COMPASS, HERMES, RHIC

- Transversity & TMD-PDFs:
 - **HERMES**: Sivers function
 - **BELLE**: Collins (fraggm.) function
 - **more**: BELLE, COMPASS, HERMES

- GPDs:
 - finishing pioneering phase ...
 - **much more to come**: HERMES, JLAB, COMPASS, JLAB-12 GeV