Transversity at HERMES

S. Gliske,
M. Diefenthaler, L. Pappalardo,
X. Lu, P. Van der Nat

University of Michigan / HERMES Collaboration

3rd Joint Meeting of the APS Division of Nuclear Physics
and the Physical Society of Japan
Waikoloa, Hawaii
13 October, 2009
Outline

- Motivation and Background
- Single hadron production
- Two hadron production
- Other distribution functions
 - Sivers function
 - Pretzelocity
 - Boer-Mulders function
- Conclusion
Motivation and Background
Motivation and Background

Transverse Momentum Dependent Functions

- SIDIS cross section can be written
 \[\sigma^{ep \rightarrow ehX} = \sum_q DF \otimes \sigma^{eq \rightarrow eq} \otimes FF \]
- Access integrals of DFs and FFs through azimuthal asymmetries in \(\phi_h, \phi_S, \phi_{R\perp} \)

Distribution Functions (DF)

<table>
<thead>
<tr>
<th>nucleon</th>
<th>quark</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>f_1</td>
<td>∙</td>
<td></td>
<td>h_\perp</td>
</tr>
<tr>
<td>L</td>
<td>g_1</td>
<td></td>
<td>∙</td>
<td>h_{\perp\perp}</td>
</tr>
<tr>
<td>T</td>
<td>f_{1T}</td>
<td>∙</td>
<td></td>
<td>h_1</td>
</tr>
<tr>
<td></td>
<td>g_{1T}</td>
<td></td>
<td>∙</td>
<td>h_{1T}</td>
</tr>
</tbody>
</table>

Fragmentation Functions (FF)

<table>
<thead>
<tr>
<th>quark</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>G_\perp</td>
<td>H_\perp</td>
<td></td>
</tr>
</tbody>
</table>

Gliske (HERMES / Michigan)
Motivation and Background

The Hermes Experiment

Beam Long. pol. e^{\pm} at 27.6 GeV

Target Trans. pol. H ($\approx 75\%$)
Log. pol. H ($\approx 85\%$)
Unpol. H,D,Ne,Kr, . . .

Lep.-Had. Sep. High efficiency $\approx 98\%$
Low contamination (<2%)

Hadron PID 2-15 GeV
SIDIS Single Hadron Production and Transversity
HERMES Collins Moments for Pions

- Increased statistics over published results

- Non-zero transversity (h_1) and Collins ($H_{1\perp}$) functions

- Positive for π^+, negative for π^-, as might be expected

\[\delta u := h_1^u > 0 \]
\[\delta d := h_1^d > 0 \]

- Large π^- asymmetry implies $H_{1\perp,\text{disf}} \approx -H_{1\perp,\text{fav}}$

- Isospin symmetry among pions fulfilled
HERMES Pion Kaon Comparison

- π^+ and K^+ consistent (u-quark dominance)
- π^- and K^- opposite sign (But $K^- = \bar{u}s$ originates from sea quarks)
Collins Pion Yield difference

Non-negligible contribution from exclusive vector meson production.

New observable “pion-difference target-spin asymmetry”

\[A_{UT}^{\pi^+ - \pi^-} := \frac{1}{S_T} \left(\sigma_{U \uparrow}^{\pi^+} - \sigma_{U \uparrow}^{\pi^-} \right) - \left(\sigma_{U \downarrow}^{\pi^+} - \sigma_{U \downarrow}^{\pi^-} \right) \]

Vector meson contribution approximately cancels.

Non-zero asymmetries not due to vector mesons.
2D Binning of HERMES Collins Results

- Kinematic dependencies may not factorize
- Bin in as many independent variables as possible to extract the most information
Efremov/Goeke/Sweitzer Extraction

- Extract H_1^\perp separately from BELLE and HERMES
- Results from both experiments consistent
- Predicted zero π^0 asymmetry

(arXiv:hep-ph/0603054v2)
Anselmino Transversity Extraction

HERMES Proton Data

BELLE A_0 Asymmetry

BELLE A_{12} Asymmetry

COMPASS Deuteron Data

- Anselmino, et al., (PRD 75:054032, 2007) simultaneously fit data from
 - BELLE $e^+e^- \rightarrow h^+h^-X$
 - HERMES SIDIS w/ proton target
 - COMPASS SIDIS w/ deuteron target
- Extracted transversity and Collins, made prediction for COMPASS w/ proton target
As expected, transversity has opposite signs for u and d.

COMPASS results consistent with prediction, i.e. strong agreement between all three experiments.
Transversity through Two Hadron Production
SIDIS Two Hadron and Vector Meson Production

- Can expand cross section in moments of four angles ϕ_h, ϕ_S, ϕ_R, θ

$$d^7 \sigma_{UT} = \sum_q \frac{\alpha^2 e_q^2}{2\pi s xy^2} B(y) |S_\perp| \left| \frac{R}{M_{hh}} \right| \sin(\phi_R + \phi_S) \sin \theta h_1(x)$$

$$\times \left(H_{1,UT}^{ZP}(z, M_{hh}^2) + \cos \theta H_{1,LT}^{ZP}(z, M_{hh}^2) \right).$$

- Transversity appears with interference fragmentation functions.
Di-hadron Results

HERMES

- Measure asymmetry $2 \left\langle \sin(\phi_{R\perp} + \phi_S) \sin \theta \right\rangle$ in π^+, π^- pair production
- Related to sp interference $FF \ H_{1,UT}^{\perp,sp}$ and transversity
- Model based on HERMES results by Bacchetta, et al. (PRD 74:114007, 2006)
- Prediction for COMPASS results yields too small of an asymmetry (arXiv:0907.0961v1)
- Both experiments indicate non-zero $H_{1,UT}^{\perp,sp}$ and non-zero transversity function

COMPASS

- A_{RS}^{P}
- h^+h^- pairs, $x > 0.032$
- h^+h^- pairs, $x \leq 0.032$
- COMPASS 2007 transverse proton data
- Bacchetta et al.

Gliske (HERMES / Michigan)

Transversity at HERMES

DNP/PSJ ‘09 16 / 1
TMD Two Hadron Production

- Transverse target portion of cross section much more complicated
 - Leading twist + only ss, sp, and pp interference \Rightarrow 27 independent A_{UT} moments
 - Fourier moments of $(\phi, \phi_R, \phi_S, \theta)$ depend on $(x, y, z, P_{h\perp}, M_{hh})$.
- Clean access to 4 TMD distribution functions: f_{1T}, $h_{1\perp}$, h_{1T}, and g_{1T}
- Many unexplored distribution functions, including interference, two meson, and single vector meson functions
- Examples:

<table>
<thead>
<tr>
<th>Moment</th>
<th>DF</th>
<th>2 had. FF</th>
<th>VM FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin(\phi_h - \phi_S)$</td>
<td>f_{1T}</td>
<td>$D_{1,UU}$</td>
<td>D_1</td>
</tr>
<tr>
<td>$\sin(2\phi_h - \phi_R - \phi_S) \sin \theta$</td>
<td>f_{1T}</td>
<td>$D_{1,UT}$</td>
<td></td>
</tr>
<tr>
<td>$\sin(\phi_R - \phi_S) \sin \theta$</td>
<td>g_{1T}</td>
<td>$G_{1,UT}$</td>
<td></td>
</tr>
<tr>
<td>$\sin(\phi_h + \phi_S)P_2(\cos \theta)$</td>
<td>h_1</td>
<td>$H_{1,LL}$</td>
<td>$H_{1,LL}$</td>
</tr>
<tr>
<td>$\sin(\phi_R + \phi_S) \sin \theta$</td>
<td>h_1</td>
<td>$H_{1,UT}$</td>
<td></td>
</tr>
<tr>
<td>$\sin(2\phi_h + \phi_R - \phi_S)P_2(\cos \theta)$</td>
<td>h_{1T}</td>
<td>$H_{1,LL}$</td>
<td>$H_{1,LL}$</td>
</tr>
<tr>
<td>$\sin(3\phi_h - \phi_S) \sin \theta$</td>
<td>h_{1T}</td>
<td>$H_{1,UT}$</td>
<td></td>
</tr>
</tbody>
</table>
Other Distribution Functions
Pretzellicity

- Non-zero Pretzellicity h_{1T}^{\perp} indicates non-spherical proton, e.g. G. Miller arXiv:0802.3731v1.

- Pretzellicity moment:
 \[
 2 \left\langle \sin(3\phi_h - \phi_S) \right\rangle = -\frac{\sum_q e_q^2 h_{1T}^{\perp, q} \otimes H_{1, q}^{\perp}}{\sum_q e_q^2 f_1^q D_1^q}
 \]

- Similar to Collins moment:
 \[
 2 \left\langle \sin(\phi_h + \phi_S) \right\rangle = -\frac{\sum_q e_q^2 h_{1}^{\perp, q} \otimes H_{1, q}^{\perp}}{\sum_q e_q^2 f_1^q D_1^q}
 \]

- HERMES results just released Sept. 09

- Data imply small or identically zero h_{1T}^{\perp}
Final Sivers results were available June 2009 (arXiv:0906.3918v1)

\[2 \left\langle \sin(\phi_h - \phi_S) \right\rangle = -\frac{\sum_q e_q^2 f_{1T}^{l,q} \otimes D_{1,q}^T}{\sum_q e_q^2 f_1^q D_1^q} \]

\(\pi^+ \) significantly non-zero, rises with \(z \)

Also, \(\pi^+ \) rises and plateaus with \(P_{h\perp} \)

Slightly positive \(\pi^0 \) and zero \(\pi^- \)

\(u \) quark dominance for \(\pi^+ \) implies \(f_{1T}^u < 0 \) and \(f_{1T}^d > 0 \)

Pion yield difference \(\Rightarrow \) non-zero asymmetry is not due to vector mesons
Kaon Sivers Moments

- Similar rise with z as π^+
- K^+ also has similar dependence on $P_{h\perp}$
- K^- slightly positive
- $\pi^+ - K^+$ difference asymmetry largest where sea quarks most vary from light quarks
HERMES and COMPASS Results

- COMPASS Results from DIS ’09 (arXiv:0907.5508v1)
- Not as good agreement as for transversity and Collins moments
- COMPASS has not yet included all data
Boer Mulders and Cahn Effect

Access to Boer-Mulders function

COMPASS results from arXiv:0907.5511v1

Model prediction by Ma, et al. (arXiv:0804.3024), “a larger asymmetry in π^- production, compared to π^+ production, would represent a signature of the Boer–Mulders effect”
Conclusion
Conclusion

- Single hadron production
 - Results from full dataset available
 - Anselmino, *et al.*, extraction of transversity and Collins FF
 - Excellent agreement between models, BELLE, COMPASS and HERMES

- Two hadron production
 - Results from COMPASS and HERMES qualitatively agree
 - Some discrepancy in magnitude of asymmetry
 - More interesting physics awaits

- Other transverse momentum distribution functions
 - First pretzelocity results
 - Final Sivers results
 - Boer-Mulders results—in process of being finalized

- HERMES has made significant contributions, with more on the way!