HERMES measurements of charge separated multiplicities for π^\pm and K^\pm production in semi-inclusive DIS

Sylvester J. Joosten

On behalf of the HERMES collaboration
University of Illinois at Urbana-Champaign

DIS 2011

XIX International Workshop on Deep Inelastic Scattering
Definition

\[
\frac{d^2 M_t^h(Q^2, x, z, p_T)}{dz dp_T} \equiv \frac{dx dQ^2}{d^2 N_t^{DIS}(Q^2, x)} \quad \text{DIS yield } N_t^{DIS}(Q^2, x)
\]

\[
\frac{d^4 N_t^h(Q^2, x, z, p_T)}{dx dQ^2 dz dp_T} \quad \text{SIDIS yield } N_t^h(Q^2, x, z, p_T)
\]
Example: LO Framework

\[
\frac{dM^h_n(Q^2, x, z)}{dz} \approx \frac{\sum_q e_q^2 f_1^q(Q^2, x) D^h_q(Q^2, z)}{\sum_q e_q^2 f_1^q(Q^2, x)}
\]

Assumptions: QPM, LO, leading twist factorized colinear QCD

- Opens access to
 - Fragmentation functions \(D^h_q(Q^2, z) \)
 - Disentangle \(q \) and \(\bar{q} \) contributions
 - Parton distribution functions \(f_1^q(Q^2, x) \)

- Additionally, through the \(p_T \) dependence
 - Fragmentation \(k_T \)
 - Intrinsic quark \(p_T \)
The HERMES Experiment

- 27.6 GeV HERA electron/positron beam
- Pure H and D gas target
- Forward spectrometer
- Very clean lepton-hadron separation
- RICH detector enables very good pion-kaon separation

\[W^2 > 10 \text{GeV}^2 \]
\[0.1 < y < 0.85 \]
\[Q^2 > 1 \text{GeV}^2 \]
\[0.023 < x < 0.6 \]
SIDIS Multiplicities: New HERMES Results

- High statistics
- 3D analysis (in x, z, p_T and Q^2, z, p_T)
- For identified and charge-separated π^{\pm} and K^{\pm}
- High precision data require sophisticated analysis:
 - Corrections for detector efficiencies
 - 3D unfolding for smearing and acceptance effects
 - In-depth systematics analysis

High precision 3D data pushes the envelope, enabling:
 - Evaluation of the quality of PDF and FF parametrizations
 - Improvements on the current parametrizations
 - Access to the transverse fragmentation function
 - Tests of the applicability of the usual colinear LO, leading-twist model assumptions in the HERMES kinematic regime
High statistics

3D analysis (in x, z, p_T and Q^2, z, p_T)

For identified and charge-separated π^\pm and K^\pm

High precision data require sophisticated analysis:
 ▶ Corrections for detector efficiencies
 ▶ 3D unfolding for smearing and acceptance effects
 ▶ In-depth systematics analysis

High precision 3D data pushes the envelope, enabling:
 ▶ Evaluation of the quality of PDF and FF parametrizations
 ▶ Improvements on the current parametrizations
 ▶ Access to the transverse fragmentation function
 ▶ Tests of the applicability of the usual colinear LO, leading-twist model assumptions in the HERMES kinematic regime
SIDIS Multiplicities: New HERMES Results

- High statistics
- 3D analysis (in x, z, p_T and Q^2, z, p_T)
- For identified and charge-separated π^\pm and K^\pm
- High precision data require sophisticated analysis:
 - Corrections for detector efficiencies
 - 3D unfolding for smearing and acceptance effects
 - In-depth systematics analysis
- High precision 3D data pushes the envelope, enabling:
 - Evaluation of the quality of PDF and FF parametrizations
 - Improvements on the current parametrizations
 - Access to the transverse fragmentation function
 - Tests of the applicability of the usual colinear LO, leading-twist model assumptions in the HERMES kinematic regime
Unfolding the SIDIS Multiplicities

Relation between true and measured quantities

\[\nu_i = \mu_{\text{tot}} \sum_{j=1}^{M} \frac{\int_{\text{bin } i} dX \int_{\text{bin } j} dY s(X|Y) \epsilon(Y) f(Y)}{\int_{\text{bin } j} dY f(Y)} \mu_j + \beta_i \]

- Measured quantity \(\nu_i \) in bin \(i \) (eg. differential cross section)
- True quantity \(\mu_j \) in bin \(j \) following the true distribution \(f(Y) \)
- Properties of the experiment:
 - Resolution function \(s(X|Y) \)
 - Experimental resolution
 - Radiative effects
 - Acceptance function \(\epsilon(Y) \)
- Background contributions \(\beta_i \) in bin \(i \)
Unfolding the SIDIS Multiplicities

Relation between true and measured quantities

\[\nu_i = \mu_{\text{tot}} \sum_{j=1}^{M} \frac{\int_{\text{bin } i} \int_{\text{bin } j} dX \, dY \, s(X|Y) \epsilon(Y) f(Y) \, \mu_j + \beta_i}{\int_{\text{bin } j} dY f(Y)} \]

- Has the shape of a matrix equation

\[\nu_i = \sum_{j=1}^{M} S_{ij} \mu_j + \beta_i \]

- Smearing matrix \(S \) independent of underlying physics \(f \) if bins small enough
- Extracted from MC simulation
Unfolding the SIDIS Multiplicities

Relation between true and measured quantities

\[\nu_i = \mu_{\text{tot}} \sum_{j=1}^{M} \frac{\int_{\text{bin}i} \, dX \int_{\text{bin}j} \, dY \, s(X|Y) \epsilon(Y) f(Y)}{\int_{\text{bin}j} \, dY f(Y)} \mu_j + \beta_i \]

- Solve for true data by simple matrix inversion

\[\mu_j = \sum_{i=1}^{M} S_{ji}^{-1} (\nu_i - \beta_i) \]

- Resulting multiplicity corrected for
 - Limited acceptance
 - Finite detector resolution
 - Radiative smearing
Results: Projections vs z

HERMES PRELIMINARY

HERMES SIDIS multiplicities

Sylvester J. Joosten (HERMES, Illinois)
Results: Projections vs zp_T

- Disentanglement of z and p_T
- Access to the transverse intrinsic quark p_T and fragmentation k_T.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{HERMES_multiplicities.png}
\caption{HERMES SIDIS multiplicities}
\end{figure}
Results: Projections vs zQ^2

- Disentanglement of z and Q^2

![Graph showing projections vs zQ^2]
Comparison with Predictions: Projections vs z

LO Interpretation
- Good agreement with CTEQ6+DSS for π^+ and K^+
- CTEQ6+Kretzer performs well for pions
- Larger deviations for π^-
- Agreement with K^- rather poor
- Model uncertainty?
Proton-deuteron multiplicity asymmetry

definition:

$$A_{d-p}^h \equiv \frac{M_d^h - M_p^h}{M_d^h + M_p^h}$$

- Reflects different valence quark content
- Improved precision by cancellations in the systematic uncertainty
Proton-deuteron multiplicity asymmetry

definition:

\[A_{h-d-p}^h \equiv \frac{M_{d}^h - M_{p}^h}{M_{d}^h + M_{p}^h} \]

LO Interpretation:

- Good agreement with LO model calculations for positive hadrons
- Bigger discrepancy for negative hadrons
- Model uncertainty?
Conclusions

- Unique set of 3D high-precision SIDIS multiplicities for π^\pm and K^\pm on p and d are presented.
- By using asymmetries and difference ratios, the precision can be improved even further due to cancellations in the systematic uncertainties.
- High value for NLO fits.
- Data can significantly contribute to knowledge of the quark fragmentation process.
Full Results: Projections vs z

HERMES PRELIMINARY

Multiplicity vs z

- Proton
- Deuteron
Full Results: Projections vs $z p_T$

```
HERMES PRELIMINARY

0.2 < z < 0.3
π^+
π^-

0.3 < z < 0.4

0.4 < z < 0.6

0.6 < z < 0.8

HERMES PRELIMINARY

K^+
K^-

Sylvester J. Joosten (HERMES, Illinois)
HERMES SIDIS multiplicities
DIS 2011 14 / 23
```
Full Results: Projections vs ZX

HERMES PRELIMINARY

- π^+
- π^-
- K^+
- K^-

HerMES SIDIS multiplicities

- Multiplicities
- $0.2 < z < 0.3$
- $0.3 < z < 0.4$
- $0.4 < z < 0.6$
- $0.6 < z < 0.8$

Sylvester J. Joosten (HERMES, Illinois)
Full Results: Projections vs zQ^2
Full Results: Asymmetries vs z

![Graph showing asymmetries vs z for different particles such as π^+, π^-, K^+, and K^-]
Full Results: Asymmetries vs $z p_T$

\[A_{d,p} \]

\begin{align*}
0.2 < z < 0.3 & & \pi^+ & & \pi^- \\
0.3 < z < 0.4 & & \pi^+ & & \pi^- \\
0.4 < z < 0.6 & & \pi^+ & & \pi^- \\
0.6 < z < 0.8 & & \pi^+ & & \pi^-
\end{align*}

HERMES PRELIMINARY

Sylvester J. Joosten (HERMES, Illinois)

HERMES SIDIS multiplicities

DIS 2011 18 / 23
Full Results: Asymmetries vs $z\times$
Full Results: Asymmetries vs zQ^2
Impact of exclusive VM fractions

Sylvester J. Joosten (HERMES, Illinois) HERMES SIDIS multiplicities

HERMES PRELIMINARY

\begin{itemize}
\item \[\text{proton, excl. VM} \]
\item \[\text{proton, incl. VM} \]
\end{itemize}
Average Q^2 as a function of x
SIDIS Multiplicities: Historical

EMC FFs

HERMES multiplicities
1996-97 data