Latest results on hard exclusive processes at HERMES

Sergey Yaschenko
DESY Zeuthen
for the HERMES collaboration

DPG Spring Meeting, March 19, 2010
Outline

Introduction

HERMES experiment

Generalized parton distributions

Selected results
- Deeply virtual Compton scattering
- Exclusive meson production

Recoil detector

Conclusion
Study of spin structure of the nucleon at HERMES

- Longitudinal spin/momentum structure, hadronization
- Transverse spin/momentum structure \rightarrow transversity, TMDs
- DVCS, exclusive meson production \rightarrow GPDs, “nucleon tomography”
- Strange-baryon production
Study of spin structure of the nucleon at HERMES

- Longitudinal spin/momentum structure, hadronization
- Transverse spin/momentum structure → transversity, TMDs
- DVCS, exclusive meson production → GPDs, “nucleon tomography”
- Strange-baryon production
Longitudinally polarized electron (positron) beams
P=27.57 GeV/c
Gas targets:
• Longitudinally polarized H, D
• Unpolarized H, D, 4He, N, Ne, Kr, Xe
• Transversely polarized H

Beam:
• Longitudinally polarized e⁺ and e⁻ with both helicities
• Energy 27.6 GeV

S. Yaschenko

Latest results on hard exclusive processes at HERMES
Generalized Parton Distributions (GPDs)

- Include Form Factors (FFs) and Parton Distribution Functions (PDFs) as moments and forward limits
- Multidimensional description of nucleon structure
- Access to the quark total angular momentum via Ji relation

$$\mathcal{J}_q = \lim_{t \to 0} \int dx \int \left[H_q(x, \xi, t) + E_q(x, \xi, t) \right]$$
Access to GPDs via exclusive processes

- Sensitivity of different final states to different GPDs
- For spin-1/2 target 4 chiral-even leading-twist quark GPDs: $H, E, \tilde{H}, \tilde{E}$
- H, \tilde{H} conserve nucleon helicity, E, \tilde{E} flip nucleon helicity
- DVCS (γ) \rightarrow $H, E, \tilde{H}, \tilde{E}$
- Vector mesons (ρ, ω, ϕ) \rightarrow H, E
- Pseudoscalar mesons (π, η) \rightarrow \tilde{H}, \tilde{E}
Deeply Virtual Compton Scattering (DVCS)
(more details in talk of Dietmar Zeiler: HK 16.4)

DVCS and Bethe-Heitler: the same initial and final state

Bethe-Heitler dominates at HERMES kinematics

GPDs accessible through cross section differences and azimuthal asymmetries via interference term
Azimuthal asymmetries in DVCS

Cross section

\[
\sigma_{LU}(\phi; P_B, C_B) = \sigma_{UU}[1 + P_B A^{DVCS}_{LU} + C_B P_B A^I_{LU} + C_B A_C]\]

Beam-charge asymmetry

\[
A_C(\phi) = \frac{\left(\sigma^{--} + \sigma^{-+}\right) - \left(\sigma^{+-} + \sigma^--\right)}{\left(\sigma^{++} + \sigma^{-+}\right) + \left(\sigma^{+-} + \sigma^--\right)} = -\frac{1}{D(\phi)} \frac{x_B^2}{y} \sum_{n=0}^{3} c_n' \cos(n\phi)
\]

Charge-difference beam-helicity asymmetry

\[
A_{LU}^I(\phi) = \frac{\left(\sigma^{++} + \sigma^{--}\right) - \left(\sigma^{+-} + \sigma^{-+}\right)}{\left(\sigma^{++} + \sigma^{-+}\right) + \left(\sigma^{+-} + \sigma^{--}\right)} = -\frac{1}{D(\phi)} \frac{x_B^2}{Q^2} \sum_{n=1}^{2} s_n' \sin(n\phi)
\]

Charge-averaged beam-helicity asymmetry

\[
A^{DVCS}_{LU}(\phi) = \frac{\left(\sigma^{++} - \sigma^{+-}\right) - \left(\sigma^{+-} - \sigma^{--}\right)}{\left(\sigma^{++} + \sigma^{+-}\right) + \left(\sigma^{+-} + \sigma^{--}\right)} = \frac{1}{D(\phi)} \frac{x_B^2 t P_1(\phi) P_2(\phi)}{Q^2} s_1^{DVCS} \sin(\phi)
\]

Measurements of these beam-helicity asymmetries allow to separate contributions from DVCS and interference term

This separation is impossible in measurements of single-charge beam-helicity asymmetry

\[
A_{LU}(\phi) = \frac{\sigma^{--} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}
\]
DVCS event selection, uncertainties and corrections

Identification by missing mass technique \((ep \rightarrow e'\gamma X)\)

Semi-inclusive corrected as dilutions for charge dependent asymmetries. For pure DVCS term asymmetry extracted from \(\pi^0 \ (z_\pi > 0.8)\) data

Associated Bethe-Heitler \(ep \rightarrow e'\Delta^+\gamma \sim 12\%\) stays part of the signal

Kinematic requirements

\[0.03 < x_B < 0.35\]
\[1 \text{ GeV}^2 < Q^2 < 10 \text{ GeV}^2\]
\[-t < 0.7 \text{ GeV}^2\]
\[E_\gamma > 5 \text{ GeV}\]
DVCS asymmetries and connections with GPDs

HERMES DVCS

- Beam charge asymmetry $GPD \ H$
- Beam helicity asymmetry $GPD \ H$
- Transverse target spin asymmetry $GPD \ E$
- Longitudinal target spin asymmetry $GPD \ \tilde{H}$
- Double spin asymmetry $GPD \ \tilde{\tilde{H}}$

Red - *JHEP 11 (2009) 083*
Results on beam-charge and beam-helicity asymmetry amplitudes in DVCS

JHEP 11 (2009) 083

$A_{C \cos \phi} \propto \Re[F_1 H]$

$A_{L,U,I \sin \phi} \propto \Im[F_1 H]$

Higher twist

Comparisons with GPD model, Vanderhaeghen, Guichon, Guidal

Resonance fraction from $ep \rightarrow e\Delta^+ \gamma$ is about 12%
Transverse target polarization asymmetry in DVCS

JHEP 06 (2008) 066

Sensitivity of GPD model predictions to J_u at fixed $J_d = 0$
DVCS on nuclear targets

- Additional information on GPDs and their modification in nuclear matter
- New opportunity to study the origin of nuclear forces
- Access to 3-D distribution of quarks and gluons in nuclei

Ratio of asymmetries measured on nuclear targets to asymmetries measured with proton target

\[R_{coh} = 1.8 - 2.0 \text{ for } A = 12 - 90 \]
Guzey, Strikman [PRC 68 (2003) 015204]

\[R_{coh} = 1.0 - 1.1 \text{ for } A = ^4\text{He} \]
Liuti, Taneja [PRC 72 (2005) 032201]

\[R_{coh} = 5/3 \text{ for spin-0, } 1/2 \]
Kirchner, Müller [EPJ C32 (2003) 347]

\[A_{LU, nucleus}^{\text{sin} \phi} / A_{LU, proton}^{\text{sin} \phi} \propto \frac{A}{Z} \]
Guzey, Siddikov [JPG 32 (2006) 251]
Analysis of DVCS on nuclear targets

- Nuclear DVCS involves two contributions:
 - Coherent process: nuclear target stays intact
 - Incoherent process: nuclear target breaks up, photon is emitted by a nucleon

- Separate coherent/incoherent part by cutoff values for \(t \)

- Find upper (lower) \(-t \) cut for each target.
 Asymmetries for coherent (incoherent) production at similar average kinematics
 - coherent: \(\langle -t \rangle = 0.018 \text{ GeV}^2 \)
 - incoherent: \(\langle -t \rangle = 0.20 \text{ GeV}^2 \)

- Results on beam-charge asymmetries for \(^4\text{He, N, Ne}\) and beam-helicity asymmetries for

\[
H, Kr, Xe: \quad A_{LU}^I(\phi) = \frac{\left(\frac{\sigma^{+\rightarrow} + \sigma^{-\leftarrow}}{\sigma^{+\rightarrow} + \sigma^{-\leftarrow}}\right) - \left(\frac{\sigma^{+\leftarrow} + \sigma^{-\rightarrow}}{\sigma^{+\leftarrow} + \sigma^{-\rightarrow}}\right)}{\left(\frac{\sigma^{+\rightarrow} + \sigma^{-\leftarrow}}{\sigma^{+\rightarrow} + \sigma^{-\leftarrow}}\right) + \left(\frac{\sigma^{+\leftarrow} + \sigma^{-\rightarrow}}{\sigma^{+\leftarrow} + \sigma^{-\rightarrow}}\right)}
\]

\[
^4\text{He, N, Ne:} \quad A_{LU}^I(\phi) = \frac{\sigma^{\rightarrow} - \sigma^{\leftarrow}}{\sigma^{\rightarrow} + \sigma^{\leftarrow}}
\]

S. Yaschenko

Latest results on hard exclusive processes at HERMES
The results do not support models which predict an enhancement of nuclear asymmetries.

Data contradict the predicted strong A-dependence of the asymmetries resulting from mesonic degrees of freedom in the nuclei.
Exclusive vector meson production

\[\rho \]

\[\phi \]

\[\omega \]
Exclusive vector meson production

Modified perturbative approach
S. V. Goloskokov and P. Kroll, EPJ C 50, 829 (2007)

\[A \propto F(x, \xi, t; \mu^2) \otimes K(x, \xi, z; \log(Q^2 / \mu^2)) \otimes \Phi(z, k_\perp; \mu^2) \]

- Factorization for \(\sigma_L \) (and \(\rho_L, \omega_L, \varphi_L \)) only

- \(\sigma_L - \sigma_T \) suppressed by \(1/Q \)

- \(\sigma_T \) suppressed by \(1/Q^2 \)

- Power corrections: \(k_\perp \) is not neglected

- Regulate the singularity in the transverse amplitude

- \(\gamma^*_\perp \rightarrow \rho^0_\perp \) transitions can be calculated (model dependent)
 - \(\rho^0 \): contributions from \(\tilde{H} \) and \(\tilde{E} \)
 - \(\pi^* \): contributions from \(H_T \) and \(\tilde{H}_T \)
Exclusive vector meson production

\[
\frac{d\sigma}{dx_B dQ^2 dt d\phi_s d\phi d\cos \theta d\phi} \approx \frac{d\sigma}{dx_B dQ^2 dt} W(x_B, Q^2, t, \phi_s, \phi, \cos \theta, \phi)
\]

Production and decay angular distributions decomposed:

\[
W = W_{UU} + P_l W_{LU} + S_L W_{UL} + P_l S_L W_{LL} + S_T W_{UT} + P_l S_T W_{LT}
\]

beams \(P_l \)

W \(XY \)

target \(S_L, S_T \)
Exclusive vector meson production

\[
\frac{d\sigma}{dx_B dQ^2 dt d\phi d\phi d \cos \theta d \phi} \approx \frac{d\sigma}{dx_B dQ^2 dt} W(x_B, Q^2, t, \phi_s, \phi, \cos \theta, \phi)
\]

- Parameterized by helicity amplitudes

M. Diehl, JHEP09 (2007) 064

- Or by Spin Density Matrix Elements (SDMEs)
Exclusive ρ^0 event selection

$\Delta E = (M_X^2 - M_p^2)/2M_p$

- Background subtraction with PYTHIA
 - $\langle Q^2 \rangle = 2.3 \text{ GeV}^2$, $\langle W \rangle = 4.9 \text{ GeV}$
 - $\langle x_B \rangle = 0.07$, $\langle -t \rangle = 0.13 \text{ GeV}^2$
\(\rho^0 \) unpolarized SDMEs

EPJ C62 (2009) 659

- Unpolarized SDMEs: \(W_{UU} \)
- Beam-polarized SDMEs: \(W_{UL} \)
- Hierarchy confirmed experimentally
- Proton and deuteron data consistent
- \(s \)-channel helicity conservation:
 - \(\rho^0 \) conserves the helicity of \(\gamma^* \)
 - significant \(\gamma^*_L \to \rho^0_L \) and \(\gamma^*_T \to \rho^0_T \)
 - a substantial interference
- \(s \)-channel helicity violation
 - significant \(\gamma^*_T \to \rho^0_L \)
 - smaller \(\gamma^*_L \to \rho^0_T \) and \(\gamma^*_{-T} \to \rho^0_T \)
 - \(2 - 10 \sigma \) level violation

Hierarchy of \(\rho^0 \) amplitudes:

\[|T_{00}|^2 \sim |T_{11}|^2 \gg |T_{01}|^2 > |T_{10}|^2 \sim |T_{1-1}|^2 \]
\(\rho^0 \) transverse SDMEs

PLB 679 (2009) 100

- **Transverse SDMEs:** \(W_{UT} \)
- **Measured for the first time**
- **Average kinematics:**
 - \(\langle -t' \rangle = 0.13 \text{ GeV}^2 \)
 - \(\langle x_B \rangle = 0.09 \)
 - \(\langle Q^2 \rangle = 2.0 \text{ GeV}^2 \)
- **Related to proton helicity-flip amplitude**
- **Suppressed by** \(\sqrt{t} / 2M_p \)

S. Yaschenko

Latest results on hard exclusive processes at HERMES
\(\rho^0 \) transverse target spin asymmetry

Connection with GPDs

\[
A_{UT}^{\sin(\phi - \phi_s)} \propto \frac{E}{H} \propto \frac{E^q + E^g}{H^q + H^g}
\]

Compatible with zero overall value

\[
A_{UT}^{\sin(\phi - \phi_s)} = -0.033 \pm 0.058
\]
Connection of ρ^0 transverse target spin asymmetry to GPDs

- Asymmetry in terms of GPDs
 \[A_{UT}^{\sin(\phi - \phi_s)} \propto \frac{E}{H} \propto \frac{E^q + E^g}{H^q + H^g} \]

- Parameterization for $H_q, H_{\bar{q}}, H_g$
 - E_g is related to the total angular momenta J_u and J_d.
 - Predictions for $J_d = 0$
 - $E_{\bar{q}}, E_g$ are neglected

- Data favours positive J_u
 - Statistics too low to reliably determine the value of J_u and its uncertainty
 - Within the statistical uncertainty in agreement with theoretical calculations
 - Indication of small $E_{\bar{q}}, E_g$?

- Other GPD model calculations
ω transverse target spin asymmetry

- Low statistics - no $ω_L/ω_T$ separation
- Predictions for large $\sin(\phi - \phi_s)$ asymmetry amplitude
 \[A_{UT}^{\sin(\phi - \phi_s)} \approx -0.1 \]
- Indication of negative $\sin(\phi - \phi_s)$ asymmetry amplitude
 \[A_{UT}^{\sin(\phi - \phi_s)} = -0.22 \pm 0.16_{\text{stat}} \pm 0.11_{\text{syst}} \]
- No contradiction with $ρ^0$ predictions
 \[A_{UT}^{ρ^0,\sin(\phi - \phi_s)} \propto \Im\left(\frac{2E^u + E^d}{2H^u + H^d + H^g} \right) \]
 \[A_{UT}^{ω,\sin(\phi - \phi_s)} \propto \Im\left(\frac{2E^u - E^d}{2H^u - H^d} \right) \]
\(\pi^+ \) transverse target spin asymmetry

- **Leading asymmetry amplitudes:** small

- **Subleading asymmetry amplitude:** surprisingly large, expected to be suppressed by \(1/Q (\gamma^*_L - \gamma^*_T \text{ interference?}) \)

Ch. Bechler, D. Müller, *arXiv:0906.2571*

Exclusivity at HERMES: Recoil detector

- Unpolarized hydrogen target: 38 Mio DIS (41.000 DVCS)
- Unpolarized deuterium target: 10 Mio DIS (7.500 DVCS)
- Two beam helicities, electron and positron beams
DVCS measurement without and with Recoil Detector

Pre-Recoil data
- Scattered lepton and photon were detected in the forward spectrometer
- Recoil proton was not detected
- Exclusivity achieved via missing mass technique
- Associated processes were not resolved (12% contribution in the signal)

Recoil data
- Detection of recoil proton
- Suppression of background to <1% level
DVCS event selection with the Recoil detector

- **Missing mass for Monte Carlo**
 - No requirement for Recoil
 - Positively charged Recoil track
 - Kinematic fit probability > 1%
 - Kinematic fit probability < 1%

- **Fit works well for Monte-Carlo**
 - After chi-square cut associated Bethe-Heitler and semi-inclusive background is suppressed to negligible level

- **For data optimization of measurement errors of kinematic parameters is necessary**
 - Preliminary optimization done
 - Systematic studies are in progress
First signal of exclusive π^0 production at HERMES

- Can provide access to chiral-even and chiral-odd GPDs
- Impossible without recoil proton detection
- With recoil information clear signal is observed

Recoil proton required

Cuts on momentum and angle difference applied
Conclusion

HERMES produced and published many results on exclusive processes
- DVCS
- Exclusive vector meson production
- Exclusive pseudoscalar meson production

New results will be presented and published soon