Measurement of the nuclear-mass dependence of spontaneous (transverse) Λ polarisation in quasi-real photoproduction at HERMES

Yu. Naryshkin (PNPI)
On behalf of the HERMES collaboration

SPIN2010 – 19th International Spin Physics Symposium
September 27 – October 2, 2010, Jülich, Germany
Introduction

Reaction under study \(\gamma^* + A \Rightarrow \Lambda^+ + X \)

\(A: \; ^1H, ^2H, ^3He, ^4He, ^14N, ^20Ne, ^84Kr, ^132Xe \)

Spontaneous (transverse) \(\Lambda \) polarization does not depend on beam or target polarizations and directed along \(\hat{n} : \)

Polarized \(\Lambda \) decay in \(\Lambda \) rest frame

\[
\frac{dN}{d\Omega_p} = \frac{dN_0}{d\Omega_p} (1 + \alpha \; P_\Lambda \cos \Theta_p)
\]

\(\alpha = 0.642 \pm 0.013 \) for \(\Lambda \),

\(\alpha = -0.642 \pm 0.013 \) for \(\bar{\Lambda} \)
A-dependence in pA collisions

Experiment @ FNAL

\[p \: A \rightarrow \Lambda \: X \]
(targets Cu, Pb, Be)

\[p_{beam} = 400 \: GeV \]

Experiment @ BNL

\[p \: A \rightarrow \Lambda \: X \]
(targets H, D, Be)

\[p_{beam} = 28 \: GeV \]
polarized positron (and electron) beam $E_e = 27.5\, \text{GeV}$,
average beam polarization $P_b \approx \pm 45\%$
polarized and unpolarized internal gas targets:
\(^1\text{H}, \, ^2\text{H}, \, ^1\text{H}, \, ^2\text{He}, \, ^3\text{He}, \, ^4\text{He}, \, ^{14}\text{N}, \, ^{20}\text{Ne}, \, ^{84}\text{Kr}, \, ^{132}\text{Xe} \)
up/down mirror symmetric (important for extraction of transverse Λ polarization)
Extraction of Λ polarization

Formalism of Λ polarization extraction is based on up/down mirror (geometrical) symmetry of the detector and moment method

$$ P_\Lambda = \frac{\langle \cos \theta_p \rangle_p}{\alpha \langle \cos^2 \theta_p \rangle_p} = \frac{1}{N_\Lambda} \sum_{i=1}^{N_\Lambda} \cos \theta_p $$

No Monte-Carlo simulations of the spectrometer acceptance is involved!
Reconstruction of Λ events

Quasi-real photoproduction, $Q^2 < 0.05 \text{ GeV}^2$ for 80% of the events (MC) $\langle E_\gamma \rangle = 15.6 \text{ GeV}$

Background suppression cuts:
- Threshold Cherenkov / Ring imaging Cherenkov detector
- $z_2 - z_1 > 15 \text{ cm}$ for Λ
- $z_2 - z_1 > 20 \text{ cm}$ for $\bar{\Lambda}$

$N(\Lambda) = 259 \cdot 10^3$, $N(\bar{\Lambda}) = 51 \cdot 10^3$
Kinematic regimes

\[x_F = \frac{p_\parallel}{p_\parallel^{\text{max}}} \quad \Rightarrow \quad \zeta = \frac{E_\Lambda + p_{\Lambda,z}}{E_e + p_{e,z}} \]

Light cone variable

HERMES data

\[\frac{N(\Lambda)}{N(\bar{\Lambda})} \]

\[\zeta = 0.25 \]

LUND mechanisms

\(p \rightarrow (ud)_0 \rightarrow \Lambda \) (current quark fragmentation)

\(\Lambda \rightarrow \bar{u}, \bar{d}, \bar{s} \)

or

\(\Lambda \rightarrow u \) (target diquark fragmentation)
Kinematical dependences of the transverse Λ polarization, 1996-2000 data

For Λ

$$P_{\Lambda} = 0.078 \pm 0.006_{\text{stat.}} \pm 0.012_{\text{syst.}}$$

For $\bar{\Lambda}$

$$P_{\bar{\Lambda}} = -0.025 \pm 0.015_{\text{stat.}} \pm 0.018_{\text{syst.}}$$

False polarization is studied using h^+h^- pairs and K_s data sample

Nuclear effects: A, A/Z-dependence of Λ polarization

\[N(\Lambda) = 385 \cdot 10^3 \quad (1996 - 2005) \]

\[\langle p_T \rangle \approx 0.25 \, GeV, \quad \langle \zeta \rangle \approx 0.63 \]
Spontaneous polarization in quasi-real photoproduction regime (Q2 < 0.05 GeV² for 80% and \(\langle E_\gamma \rangle = 15.6 \text{ GeV} \)) obtained mainly on H,D is found to be:

for \(\Lambda\) \(P_n = 0.078 \pm 0.006_{\text{stat.}} \pm 0.012_{\text{syst.}}\)

and \(\bar{\Lambda}\)-bar \(P_n = -0.025 \pm 0.015_{\text{stat.}} \pm 0.018_{\text{syst.}}\).

A (A/Z) - dependence of \(P_n\) is observed. Unlike case of hadron collisions for light nuclei \(P_n\) is positive while for heavy nuclei \(P_n\) is compatible with zero.
Backup slides
A-dependence of the polarization

$0 < \zeta < 1$

$\zeta < 0.25$

$\zeta > 0.25$

HERMES PRELIMINARY

1H, 3He, 4He, 14N, 20Ne, 84Kr, 132Xe
A/Z-dependence of the polarization

$0 < \zeta < 1$

$\zeta < 0.25$

$\zeta > 0.25$

SPIN 2010 Yu.Naryshkin